
Impact of PCM Flicker Noise and Weight Drift on Analog Hardware Inference  

for state-of-the-art Deep Learning Networks 
 

J.-P. Han1, M. J. Rasch1, Z. Liu2, P. Solomon1, K. Brew2, K. Cheng2, I. Ok2, V. Chan2, M. Longstreet3, W. Kim1, R. Bruce1, C. 

Cheng1, N. Gong1, P. Adusumilli2, S. Pinkett2, H. Li3, N. Saulnier2, T. Yamashita2, M. Brightsky1, and V. Narayanan1 
1IBM T. J. Watson Research Center, Yorktown, USA, phone: +1-914-945-1778, email: hanjp@us.ibm.com 

2IBM Research - Albany Nano Tech, USA, 3IBM System, Hopewell Junction, NY, USA 
 

Abstract   We have characterized flicker noise of Ge2Sb2Te5 

(GST) based phase change memory (PCM) cells and found 

agreement with potential trap activation and defect annihi-

lation in asymmetric cell structure for reset and set, respec-

tively. We assessed the impact of flicker noise and drift on 

analog deep learning (DL) hardware for state-of-the-art net-

works at scale. We show the effect of accumulated flicker 

noise ∝ √𝑨𝒓 ∗ wait time  and conductance drift ∝
(𝒘𝒂𝒊𝒕 𝒕𝒊𝒎𝒆)−𝝂, where Ar is the flicker noise figure of merit 

(FOM) and  is the drift coefficient, on inference accuracy. 

We find that hardware aware (HWA) retraining is essential 

and a tight control of Ar and  is vital for DL inference.                                                                                  
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Introduction Analog crossbar arrays have been broadly investi-

gated for DL acceleration [1]. The effect of conductance drifting 

has been addressed [2,3], yet the impact of low frequency flicker 

noise (incl. 1/f [4] and random telegraph noise (RTN)) has re-

ceived little attention, even though such noise might affect in-

ference and training accuracy considerably. Here, we systemat-

ically characterize flicker noise of typical GST based PCM cell 

[5] processed in advanced technology back end of line (BEOL). 

We describe read voltage polarity dependence of the power 

spectral density (PSD) in terms of asymmetric cell structure and 

trap-assisted mechanism and discuss the dependency of Ar and 

 on device resistance (R). We evaluate their impact on analog 

DL inference by including these phenomena in a hardware sim-

ulator for state-of-the-art DL networks at scale [6]. This is the 

first study of such networks to provide insight into the im-

portance of flicker noise and weight drift. 

Characterization of flicker noise The GST device is pre-pro-

grammed with full reset, partial reset, and set pulses prior to 

measuring flicker noise (Fig. 1a), then a read voltage is applied 

at the top electrode (TE) or the bottom electrode (BE) of the 

asymmetric cell structure. The normalized PSD (Sid /i2(f ); 

Figs.1de) shows that the PSD gap between reset and set in the 

BE case is much bigger than in the TE case, even though that 

device I-V is symmetric in the reset state. The asymmetric struc-

ture and the existence of traps may contribute to the read voltage 

polarity dependence. As shown in Figs. 2a-f, crystalline GST 

(set state) has mainly acceptor-type traps, while amorphous GST 

(reset state) has, in addition, donor-type and lone pair traps [7]. 

In the reset state, when 0.2V is applied at BE, it may trigger the 

donor-type traps near the heater, resulting in increased 1/f noise. 

In the set state, vacancy-type defect annihilation may occur 

causing the 1/f noise to decrease, however, reduced set re-

sistance may also play a role here. In the TE case, the phase seg-

regation due to the asymmetric cell structure prevents traps from 

being triggered or destroyed.  

Flicker FOM for analog DL The empirically determined FOM 

for assessment of flicker noise on analog DL are defined in Figs. 

3ab. For well-behaved 1/f noise, it is Sid/i2(f) = Ar/f, where Ar is 

scale independent. This was modeled, in our resistive processing 

unit (RPU) simulation tool [6], using a log-uniform spectrum of 

RTN traps, each trap causing a fractional change in weight value 

(Figs. 3ac). For flicker noise with a prominent shoulder, we ex-

trapolated Ar’ (Figs. 3bd) which approximately integrates to the 

same amount as the Ar’/f spectrum. In a 3-layer FC-DNN on 

MNIST, we find that during the waiting time before inference 

the flicker noise will accumulate, causing an increase in test er-

ror (Figs. 3ef). Note that this toy-level network may underesti-

mate HW requirements for realistic cases (see below), although 

it provides initial guidance for prototype development. 

Resistance dependence of flicker and drift Flicker noise Sid/i2(f) 

(Fig. 4a) and resistance drift  log(𝑅/𝑅0) = 𝒗log(𝑡/𝑡0)  [8] 

(4b) show clear resistance dependency, a positive correlation be-

tween Ar (or Ar’) and  is evident (4c). Double well potential 

(DWP; see Fig. 4d) have been used to illustrate defect fluctua-

tion with voltage bias modulation, which may explain the corre-

lation of flicker and drift [9,10], although mechanisms may dif-

fer. The asymmetry in the two barriers (Fig. 4e) results in differ-

ent transition rates between energy potential minima for struc-

tural relaxation or crystallization.  

Impact on state-of-the art DL networks To study the impact of 

flicker noise and drift at scale, we investigate their effects on 

inference for large vision networks (8M-143.7M free parameters, 

see Fig. 5) on the ImageNet dataset (1.2M images, [11]). First, 

we initialize with floating-point (FP) trained weights (from [12]) 

and used our standard RPU specification, which includes 

clipped weight ranges, DAC/ADC discretization and system 

noise etc. (see [1, 6]), for inference. Accumulated flicker noise 

is added to the initial weights as a waiting time t dependent 

Gaussian noise with variance =Ar ln(t/tread) (RPU array inte-

gration time tread is 100ns).  Figs. 6ad show the impact of 

flicker and drift on the top-1 error when system noise is turned 

off (vertical lines mark example values for Ar, , and t). In Fig. 

6be, realistic RPU system noise is turned on and results in severe 

degradation of inference accuracy. In Fig. 6cf, we retrain the FP 

networks by including the RPU specification into the forward 

training pass only (similar to [13], but with distilling [14]). 

When retraining in this hardware-aware (HWA) fashion, infer-

ence becomes robust to all analog RPU imperfections. Moreover, 

flicker tolerance can be further improved when including addi-

tive weight noise (reminiscent of 1/f noise) in HWA training 

(dashed lines in Fig. 6c). Our results show clearly that HWA 

training is necessary for analog inference at scale. 

Conclusion We have established a methodology of characteriz-

ing flicker noise of analog synaptic devices (e.g. PCM) and eval-

uating inference performance on analog DL. Results indicate 

that inference may be prone to flicker noise, in addition to 

weight drift and system noise, especially for large-scale net-

works. Material and process optimization along with HWA re-

training will be needed to mitigate the overall noise impact on 

analog inference DL hardware. 
 

[1] Gokmen & Vlasov, Front. Neurosci. (2016) [2] Ambrogio et al., 

IEDM (2019) [3] Nandakumar et al., IEEE-ICECS (2019) [4] Fugazza 

et al., IEDM (2009) [5] Burr et al., IEEE Trans. Elec. Dev. (2015) [6] 

Rasch et al., IEEE Design & Test (2019) [7] Pirovano et al., IEEE Trans. 

Elec. Dev. (2004) [8] Karpov et al., J. Appl. Phys. (2007) [9] Ielmini et 

al., IEDM (2007) [10] Nardone et al., Phys. Rev. B (2009) [11] Deng et 

 B-7-01 Extended Abstracts of the 2020 International Conference on Solid State Devices and Materials, VIRTUAL conference, 2020, pp81-82

- 81 -



al., CVPR09 (2009) [12] https://pytorch.org/docs/stable/torchvision 

[13] Gokmen et al., IEDM (2019) [14] Hinton et al., arXiv:1503.02531 

(2015) 

 

 

 
Fig. 2 Illustrations for explaining read voltage polarity dependence for 

amorphous (a-c) and poly-crystalline GST (d-f). Band diagrams of set 

(c) and reset (f) with various types of defects [7]. If read applied at BE, 

donor-type traps near the heater increase flicker in reset state, while pos-

sible vacancy-type defect annihilation decreases flicker noise in set state. 

In the TE case, phase segregation may prevent both. 
 

Fig. 1 (a) Pre-programing and testing 1/f noise on GST device under test 

(DUT), asymmetric cell cross-section TEM (b) with 0.2V applied to top 

electrode (TE) or bottom electrode (BE) (c). Corresponding normalized 

PSD of reset / set when read from (d) TE or (e) BE. 

 
Fig. 3 Empirically determined FOM (a) Ar for simulated 1/f, (b) Ar’ for sim-

ulated RTN. (c) Ar and (d) Ar’ obtained experimentally from PCM devices, 

extrapolated from normalized Sid/i2(f). (e-f) Inference impact for MNIST 3-

layer fully connected (FC) DNN toy network with our analog RPU model 

[1] for different settings of Ar and waiting time t. Note that the test error 

degrades with increasing Ar or t. 

 
Fig. 4. PCM reset / partial set / set states (a) 1/f: Sid/i2 vs. f. (b) drift: 

R vs. t. (c) Ar and drift coefficient  as a function of R showing clear 

correlation. (d) Double well potential modulation due to defect fluc-

tuation in 1/f (electronic DWP) and structural relaxation in drift 

(atomic DWP) may explain the correlation between Ar and  

 
Fig. 5. To investigate the effect 1/f noise and weight drift for 

analog DL inference, we performed RPU hardware simulation 

[1,6] of 6 large, state-of-the-art networks on ImageNet: 

VGG13, VGG19, ResNet18, ResNet50, WideResNet50, 

Densenet121. For a size comparison, a toy 3-layer FC-DNN for 

MNIST is shown on the left. 

 
Fig. 6 (a) RPU model without system noise using FP trained weights. Larger Ar or 

longer waiting time t increases top-1 error. (b): as in (a) but with system noise on 

show failure.  (c): HWA retraining recovers functionality. HWA (+1/f) retraining 

increases flicker tolerance (dotted lines). (d-f): as in (a-c) but for drift, showing 

degradation (d),  impact (e), HWA recovery (f). Left-hand color arrows: FP base-

line references for 6 state-of-the-art networks as labeled in legends in (b). 
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