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Nanoscale Limits of Resistance Switching in Some
Oxides and 2D Chalcogenide Materials
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Reversible resistance switching in some chalcogenide compounds (like GeSbTe) and
certain oxides (like VO2) have been studied for more than half a century [1,2]. However,
due to advances in nanofabrication, only in the last few years have devices based on
these materials approached nanometer scale, near-atomic limits [3,4].

This talk will present recent highlights from our research on phase-change memory
(PCM) materials, resistive random-access memory (RRAM) and insulator-metal tran-
sition (IMT) oxides. The results span from measurements of thermal and electrical
properties of such devices and their interfaces, to understanding their fundamental size
and energy limitations [5], at sub-10 nm dimensions whenever possible.

We find that energy-efficiency of PCM can be significantly improved by using two-
dimensional (2D) materials and thermal insulators [6,7] (Fig. 1), and by reducing the
programming pulse widths, to few nanoseconds. We use Raman thermometry and scan-
ning thermal microscopy (SThM) to probe the temperature in functioning PCM devices
[8,9], including those based on emerging 2D materials like MoTe2 [10]. Applied to
RRAM devices, SThM imaging reveals the formation of individual filaments [11] (Fig.
2). Simulations [5] and additional measurements [12] reveal that thermal and electrical
contact resistance often dominate the behavior of such nanoscale memory.

Turning to IMT materials like VO, we use single-wall metallic carbon nanotubes
(CNTSs) as ultra-narrow (~1 nm) electrodes to probe the IMT at the nanoscale [4]. The
CNT electrodes reduce the heated VO2 volume to few-nanometer regions, enabling fast
spiking oscillators for neuromorphic applications [13] (Fig. 3).

Taken together, these results probe the fundamental limitations of PCM, RRAM, and
IMT technology, providing important insights for future energy-efficient designs.
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Fig. 1. PCM with 2D material thermal insulation layer [7]. (a) Cross-sectional transmission electron
microscopy (TEM) image of the fabricated PCM device, with monolayer MoS; at the Ge;Sh,Tes (GST)
interface with the bottom electrode. (b) Trend of thermal conductivity and thermal boundary resistance
(TBR) among several considered 2D materials [6,7]. (c) Electrical measurements of PCM cells with
MoS; and graphene thermal insulation layer, compared to control device [7].
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Fig. 2. (a) Schematic of scanning thermal microscopy (SThM) measurements of functioning RRAM
device based on HfO, [11]. (b) Top-side SThM imaging of nanoscale filamentary hot spot, and (c) esti-
mated temperature rise recorded by SThM. Note that SThM measures the top electrode temperature, and
simulations are used to deduce the filamentary temperature within the RRAM (>1200 K).
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Fig. 3. (a) Schematic and (b) atomic force microscopy (AFM) image of VO, device with CNT heater
electrode. (c) Measured quasi-static current-voltage behavior of such a device, causing oscillations when
biased in the negative differential resistance (NDR) region. (d) Periodic voltage spiking of a device
driven by a 60 pA DC current, measured across the 50 Q load of the oscilloscope.
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