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Abstract 

Si deep trench capacitors with textured surface and 

SiN dielectric film are presented in this work. The devel-

oped capacitors achieved over 230fF/µm2 capacitance den-

sity, 9.0V breakdown voltage and very low leakage current. 

The developed capacitors can be utilized for various com-

pact electronic systems using 3D integration.  

1. Introduction 

Capacitors have been important parts of integrated cir-

cuits; small bypass capacitors for LSI, RF/Microwave capac-

itors, and capacitive elements for analog IC and so on. For 

compact system integrations, high capacitance density is re-
quired. In addition, high reliability such as low leakage cur-

rent and high breakdown voltage are also required for various 

applications. Fig. 1(a) shows the correlation between the leak-

age current density at 1V and the capacitance density of vari-

ous types of capacitors. Metal-Insulator-Metal (MIM) capac-

itors and Metal-Insulator-Silicon (MIS) capacitors have low 

leakage current but relatively low capacitance density of about 

50fF/µm2 [1-4]. DRAM capacitors have a high capacitance 

density; however, their leakage current density is targeted to 

be around 10-7A/cm2 [5], thus they are not suitable for analog 

applications such as sample/hold circuits and amplifiers. Con-

sequently, there is a demand for a capacitor having a high 
breakdown voltage, a low leakage current, and a high capaci-

tance density, in order to be utilized in various applications. 

Si trench capacitors with high quality insulator films have 

been explored for this purpose [6-8]. In addition, for compact 

system development, these capacitors should be able to be in-

tegrated with LSI using 3D integration technologies such as 

TSV, micro-bumps and hybrid bonding [9]. In this work, we 

developed versatile high capacitance density and highly relia-

ble Si deep trench capacitors with textured surface and SiN 

films toward 3D integration. The size of the capacitor can be 

easily changed as shown in Fig. 1(b). 

2. Capacitor design and experimental setup 

Eq. (1) shows a simple capacity equation. The capacitance 
is decided by the surface area, the permittivity of the dielectric, 

and dielectric thickness. In order to expand the surface area in 

three dimensions, we introduced textured deep trench with 

highly reliable SiN as the dielectric. 

𝐶 =
𝑆

𝑑
𝜀 (1)  

Fig. 2 shows layout diagrams of the unit cell. A chip con-
sists of parallel unit cells with deep trench. By choosing the 

number of connecting unit cells we can select the capacitor 

area and enhance versatility. In order to suppress warping of 

wafers during the fabrication process, trench pattern is formed 

both vertically and horizontally. Fig. 3 shows the process flow 

of the fabricated wafer and the wafer photograph. Voltage de-

pendency of capacitance is reduced by introducing high dop-

ing layer in the substrate. The texture is formed by rugged 

poly-Si formation [10]. The buried electrode is n+ doped poly-
Si. High temperature process is available with this structure 

for high reliability. Table I shows the fabricated samples. We 

verified the influence of trench, dielectric film structures 

(ONO and NO [11]) and thickness, trench depth, and devel-

oped the optimized sample. 

3. Results and discussions 

Fig. 4 shows measurement results of planar capacitors and 

trench capacitors (Samples 1, 2). The results show that deep 

trench enhances about 22 times capacitance with the high 

breakdown voltage. Fig. 5 shows measurement results of ca-

pacitors with different dielectric film structures and thickness 

(Samples 3, 4, 5). They show that NO structure and thin thick-

ness film lead to high capacitance density and NO structure 
does not affect breakdown voltage. We decided to use NO 

structure for high capacitance density and 10 nm thickness for 

high reliability. Fig. 6 shows the measurement results of 

breakdown voltage and leakage current density as functions 

of capacitance density with different trench depths (Samples 

6, 7, 8). The result shows no correlation between trench depth 

and breakdown voltage or leakage current. From the result, we 

decided to use 14.3µm depth and designed the optimized sam-

ple layout (Sample 7’). Fig. 7 shows the TDDB measurement 

results of capacitors (Sample 7’). Fig. 7(a) shows the Weibull 

distribution and Fig. 7(b) shows lifetime prediction with a cu-

mulative failure probability of 0.1%, which indicates more 
than 50 years at 3.3V. Table II shows the performance sum-

mary of the developed capacitor. Fig. 8 shows breakdown 

voltage as a function of capacitance density of various fabri-

cated structures. From the obtained trend, it is expected that 

the capacitance density will be further improved if the dielec-

tric thickness is reduced for low voltage applications. 

4. Conclusions 

We developed textured deep trench SiN capacitors over 

230fF/µm2 capacitance density, 9.0V breakdown voltage and 

low leakage current. The developed capacitor is based on the 

versatile design with Si substrate, it can be utilized in various 

applications through 3D integration for compact systems.  
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Fig. 1 (a) Leakage current density 
at 1V as a function of capacitance 
density, comparing various types 
of capacitors. (b) Schematic illus-
tration of system integration using 
stacking with other devices. 

 

Fig. 2 Structures of a capacitor chip. (a)Layout diagrams of 
the unit cell with deep trench (DTR). Circuit schematic rep-
resenting parallel unit cells. (b)SEM view of the fabricated 
textured deep trench. 
 

Fig. 4 Measurement results of planar and trench capacitors (Samples 1, 2). 
(a) CV characteristics showing 22 times higher capacitance density with 
deep trench compared to planar structure. (b) IV characteristics showing 
enough high breakdown voltage with deep trench. 

Fig. 5 Measurement results of capacitors with different dielectric film struc-
tures and thickness (Samples 3, 4, 5). (a) CV characteristics showing NO 

structure and thin thickness film lead to high capacitance density. (b) IV 
characteristics, showing NO structure does not affect breakdown voltage. 

Fig. 6 (a)Breakdown voltage as a function of capacitance 
density. (b) Leakage current density at 1V as a function 
of capacitance density (Samples 6, 7, 8) The results show 
no correlation between trench depth and breakdown volt-

age or leakage current. 

Fig. 7 TDDB measurement results of the developed ca-
pacitors (Sample 7’). (a) Weibull distribution. (b) Life-
time prediction with a cumulative failure probability of 
0.1%.   

Fig. 8 Comparison of break-
down voltage as a function of 
capacitance density among 
various fabricated structures.   

(a) 

Circuit schematic 
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Fig. 3 Process flow and 
wafer photograph. 
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Table I. Summary of the fabricated samples. 

(a) 

Table II. Performance summary of the 
developed capacitor. 

(b) 
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