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Abstract 

Wireline transceivers that realize inter-processor com-

munications at high data rate are required to improve 

computation performance. To achieve the required data 

rate, wireline transceivers were designed with circuits to 

enhance the bandwidth (BW). In this paper, we introduce 

the high-speed electrical and optical transceivers and cir-

cuit technologies we developed to realize signal transmis-

sion at tens of gigabits per second. 

1. Introduction

With the rapid growth of data traffic in data centers,

higher data transfer rates are required for inter-processor 

communications as shown in Fig. 1. In large-scale computer 

systems, the workload is executed using multiple processors 

in parallel. Improving computation performance requires not 

only advancements in processing power, but also advance-

ments in input/output (I/O) bandwidth (BW). 

In this paper, we introduce 56Gb/s electrical and 25Gb/s 

optical transceivers and circuit technologies we developed to 

achieve the required I/O BW. In addition, we introduce the 

latest circuit technologies for achieving 100Gb/s. 

Fig. 1 High-speed wireline transceivers 

2. 56Gb/s Electrical Transceiver

A block diagram of the 28nm CMOS transceiver [1] is

shown in Fig. 2. This transceiver has a two-lane configura-

tion, with each lane supporting 56Gb/s non-return-to-zero 

(NRZ) signal transfer. The transmitter (TX) converts 

1.75Gb/s 32-bit signals, corresponding to the signals from a 

processor core circuit, into a 56Gb/s signal using multiplex-

ers (MUXs). The receiver (RX) converts a 56Gb/s signal 

into 1.75Gb/s 32-bit signals using demultiplexers (DMXs). 

Fig. 2 56Gb/s transceiver block diagram and chip micrograph 

The TX front-end circuit is shown in Fig. 3(a). The out-

put stage is a source-series-terminated (SST) driver that has 

a capacitor connected in parallel with the series-termination 

resistor to improve eye opening [2]. The 2-tap feed-forward 

equalizer (FFE) to compensate for the frequency-dependent 

signal loss in the transmission media is implemented by con-

necting the outputs of the two SST drivers corresponding to 

the main-tap and pre-tap in Fig. 2. 

The RX front end has a continuous-time linear equalizer 

(CTLE), as shown in Fig. 3(b). The CTLE also compensates 

for the signal loss and consists of a high-frequency equalizer 

(HFEQ) and a low-frequency equalizer (LFEQ) [3]. The 

HFEQ is a single-stage source-degenerated amplifier, and 

the LFEQ is a two-stage equalizer with a feedback circuit 

that generates an additional zero at a low frequency. 

Fig. 3 (a) TX 2-to-1 MUX and SST driver stage, (b) RX CTLE 

The clock-recovery unit (CRU) in the RX adjusts the 

sampling phase to sample the CTLE output signal. Our 

scheme requires eight comparators and a four-phase quarter 

rate clock to perform phase detection as shown in Fig. 2. We 

explain the scheme using a simplified model in Fig. 4 to 

make understanding the operating principle easier. The plot 

on the right shows a simulated eye at the comparator input. 

The red, blue, and green dashed lines correspond to the 

high-threshold level, low-threshold level, and sampling 

phase of the comparator, respectively. The phase of the data 

is measured when the sequence is either 011 or 100. For ex-

ample, when 011 is detected, the output of the high-thresh-

old level comparator for the center bit is used to determine 

whether the timing is early or late. The output of the low-

threshold level comparator is used for data decision. The op-

eration of this scheme also includes a one-tap speculative 

decision-feedback equalizer (DFE) to compensate for signal 

loss. The threshold level of the comparator corresponds to 

the tap coefficient. The conventional scheme has separate 

comparators for phase detection and DFE. In contrast, our 
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proposed scheme uses the same comparators for phase de-

tection and DFE, and reduces the power consumption as a 

result by reducing the number of comparators. 

Fig. 4 Phase detection and data decision 

The 56.2Gb/s TX output eye observed through a channel 

loss of 7.2dB at 28.1GHz is shown in Fig. 5(a). The RX jit-

ter tolerance curve in Fig. 5(b) measured using a 56.2Gb/s at 

BER=10-12 satisfies the OIF CEI-56G-VSR MASK. The 

transceiver achieved 18.4dB loss compensation at 56.2Gb/s. 

Fig. 5 (a) TX eye diagram (PRBS15), (b) RX jitter tolerance 

3. Hybrid Integrated Silicon Photonic (SiPh) Transceiver

Integrated photonic interconnect technology does not

suffer from the bandwidth-distance limitation intrinsic to 

electrical interconnects, and promises to be a disruptive al-

ternative for next-generation scalable data centers. We de-

veloped a hybrid integrated SiPh transceiver with an electri-

cal-optical interface that includes a 28nm CMOS driver/TIA 

chip and a SOI modulator/PD chip [4] shown in Fig. 6. 

Fig. 6 Transceiver structure, block diagram, chip micrograph 

A pseudo-differential driver and a 2-tap FIR filter with a 

tap delay of 0.5UI and coefficient of 0.8 enable an 800MHz 

BW carrier-injection ring modulator to be operated at 

25Gb/s. The TIA implements two BW-enhancement tech-

niques as shown in Fig. 7, namely, a regulated-cascode input 

stage with shunt-shunt feedback and T-coil inductive peak-

ing and a hybrid offset calibration, achieving 25Gb/s. 

In the TX measurement, a 1550nm laser source is used 

to generate an optical signal, and the modulated optical sig-

nal is observed by an oscilloscope. The RX output electrical 

eye and BER versus PD input optical modulation amplitude 

(OMA) are shown in Fig. 8. A BER of 10-12 is achieved with 

-8.0dBm OMA.

Fig. 7 RX schematic for SiPh transceiver 

Fig. 8 (a) 25Gb/s TX optical output, (b) RX sensitivity 

4. Circuit technology to achieve 100Gb/s or more

Four-level pulse amplitude modulation (PAM4) has be-

come the dominant scheme for 100Gb/s because 2 bits can 

be transmitted simultaneously through multiplexing in the 

amplitude direction. Therefore, PAM4 has better spectral ef-

ficiency than NRZ. However, because the signal amplitude 

of PAM4 is only 1/3 that of NRZ, the signal quality is likely 

to be degraded by the PVT variations of the analog front-

end circuits, such as the TX driver and RX CTLE. Compen-

sation for these variations is thus necessary. In addition, the 

number of FFE and DFE taps need to be adjustable to ac-

commodate various transmission media and lengths. The 

suitability of digital circuits for adaptive control has led to 

the ongoing development of digital-to-analog converter 

(DAC)- and analog-to-digital converter (ADC)-based trans-

ceivers using digital signal processing (DSP) [5,6,7] to meet 

these requirements, as shown in Fig. 9. 
In the future, high-speed and low-power DACs and 

ADCs, and architectures that simplify digital signal pro-

cessing will become key technologies. 

Fig. 9 DAC- and ADC-based transceiver using DSP 

5. Conclusions

In this paper, we introduced high-speed wireline trans-

ceivers and circuit technologies that achieve the desired data 

rate by compensating for the signal loss. DAC- and ADC-

based transceivers using DSPs have become the dominant 

architecture for data rates above 100Gb/s. The continued im-

provement of data rates will be realized by digital signal 

processing together with BW enhancement using the analog 

front-end circuits introduced in this paper. 
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