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Abstract 

We present a 1.5 μm InP-based epitaxially regrown 

photonic crystal surface emitting laser diode operating at 

room temperature.  

 

1. Introduction 

Photonic crystal surface emitting lasers (PCSELs) are a 

novel class of laser, incorporating a photonic crystal (PC) 

layer in the semiconductor structure. When placed within a 

semiconductor laser structure, the PC scatters light out of 

plane forming a surface emitting laser. PCSELs have shown 

ability to operate single mode [1] with high power [2]. While 

traditionally realized by wafer fusion, recently epitaxial re-

growth has become the de facto standard PCSEL device fab-

rication [3,4]. 5G roll-out requires larger data-centers to sat-

isfy the growing demand for data. Longer link lengths will be 

required to connect distributed data-centers, requiring low-

cost, high-speed laser sources at wavelengths suitable for sil-

ica-fibers. Several LiDAR, free-space communication, and 

range-finding systems operate at 1.5 μm for eye-safety.  

PCSELs can achieve high powers, with production costs sim-

ilar to VCSELs. Here we present an epitaxially re-grown InP-

based all semiconductor PCSEL operating at 1.5 μm at room 

temperature.  

 

2. Design and Fabrication 

Device simulations were made using LaserMOD. Fig. 1a) 

shows a schematic of the PCSEL device considered in this 

paper. Five 6 nm AlGaInAs quantum wells provide a room-

temperature spontaneous emission peak at 1.53 μm. A p-

doped 243 nm PC Layer (GaInAsP and InP with air contain-

ing voids) is 100 nm above active layer. The PC and active 

layers are further sandwiched between 3.3 μm of n-doped InP 

and a 1.8 μm p-doped InP layer. The device is capped with a 

p+InGaAs contact layer. The PC is patterned with a circular 

atom in a square lattice. The period and r/a are 470 nm and 

0.17, respectively. Fig. 1b) shows a cross section of the same 

structure with simulated mode profile overlaid. The average 

refractive index of PC layer is assumed to be 3.24, providing 

a mode overlap of 12.9% and 16.4% with the active and PC 

layers respectively.  

The devices were fabricated on InP epitaxial wafers, 

topped with a 245 nm GaInAsP layer forming the basis for 

the PC structure. The PC pattern was defined by electron-

beam lithography, and a CHF3/Ar - based reactive ion etch 

was used to imprint the pattern into a 200 nm-thick SiO2 

hard mask. Through this hard mask, the underlying semicon 

 

Fig. 1: a) A 3D schematic of the device, with cut-out area showing 

an SEM image of the photonic crystal pattern. b) A schematic of the 

corresponding mode distribution inside the device structure. 

 

ductor is etched to a depth of approximately 170 nm to form 

holes with an ~80° side wall angle by inductively coupled 

plasma etch using a CHF4/H2 chemistry. The top view of the 

PC after etching is shown in Fig.1. After removing the hard 
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mask and cleaning the wafer with uv/ozone and 10:1 buffed 

HF, epitaxial regrowth was performed. Growth conditions  

were chosen to form voids during the regrowth inside each of 

the patterned features within the PC layer. Fig 2a) shows a  

Fig. 2: a) A TEM image and b) a schematic of a single re-grown 

circular etched feature in the PC Layer. A void is located at the 

bottom of the hole. 

 

TEM bright field image of an overgrown PCSEL where the 

void can clearly be seen. Fig 2b) shows a schematic of the 

imaged structure which provided an input to waveguide sim-

ulation and plane-wave expansion simulation of the PCSEL. 

Following regrowth, the PCSEL fabrication is completed 

by etching a 200 μm x 200 μm square device mesa into the 

regrown material to a depth of 100 nm. Contacts and bond 

pads were then added using standard fabrication techniques. 

The PC region is 200 μm x 200 μm. 

 

3. Results 

   Fig.3 a) shows the LI-characteristics of the PCSEL, meas-

ured under pulsed conditions (10% duty cycle, 10 μs pulse 

width). The threshold current is 640 mA (J=1.6 kA/cm−2). 

An average slope efficiency of ~0.002 W/A is obtained, 

which is low due to the circular symmetry of the PC and the 

masking of the PCSEL emission by the contacts. Higher pow-

ers are expected by utilizing asymmetric PC structures [2], 

developing our processes to realize a height of the void closer 

to half the PC period, and inducing vertical asymmetry of the 

re-grown void [5].   

The EL spectrum obtained at 1A is shown in Fig. 3b).  

Lasing is observed at 1523 nm in good agreement with simu-

lated mode-index and a PC period of 470 nm. An SMSR of 

17 dB is measured. Fig. 3c) shows the simulated optical den-

sity of states (ODOS) for the PCSEL device. Each peak cor-

responds to the band edge of the photonic crystal. Only the 

range of k-vectors with NA = 0.34 was considered, matching 

the collection angle of the experimental setup used in fig. 3a. 

The simulated features show good agreement with the meas-

ured lasing peak, and indicated a second peak at 1519 nm (the 

leaky non-lasing mode). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: a) The LI characteristics of the device. b) The emission spec-

trum and c) corresponding simulated optical density of states. 

 

4. Conclusion 

The realization of an InP-based 1.5 μm PCSEL was re-

ported. By controlling PC definition and regrowth parameters, 

a void is formed inside the PC during the epitaxial regrowth 

process. This opens a route to a surface emitting laser operat-

ing at a key wavelength for a range of applications. 
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