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Abstract 
Plasmonics is presented as a next-generation photonic 

technology for high-speed optical communications. It of-
fers highest-speed modulators and detectors that are com-
pact, cost- and energy-efficient, and compatible with 
CMOS electronics. We show how co-integration of plas-
monics and electronics has enabled the fastest hybrid 
transmitter (222 GBd) or the world’s first 120 GBd mon-
olithic transmitter. 

1. Introduction
Next-generation optical interconnects have to overcome

the capacity gap between electronics and photonics. Current 
solutions are sufficient for links of tens or hundreds of Gb/s, 
but Tb/s will soon be required in datacentres [1, 2]. Hence, 
parallelisation and high line data rates are of particular need. 
A compact, fast, cost- and energy-efficient platform for elec-
tronic-photonic co-integration can achieve this goal [3]. 

Currently, a variety of photonic technologies for transmit-
ters and receivers based on indium phosphide (InP) photonics 
[4-7], lithium niobate (LNB) photonics [8, 9], silicon (Si) 
photonics [10-12] or plasmonics [13-23] are being investi-
gated, while no leading technology could yet establish itself. 
Possible reasons for this are limited device performance, 
technology costs, manufacturing maturity or challenges in 
co-integration with electronics. For example, Si photonics is 
already a mature technology with expected yearly revenues 
of 4 billion USD in 2025 [24]. Yet, its active components 
have large footprints, which renders scaling to higher speed a 
challenge – even though monolithic integration using special-
ised silicon-based CMOS photonics has been shown [25]. In 
contrast, plasmonics can easily reach highest speeds as the 
photonic technology with largest bandwidth [20] and ul-
tra-low energy consumption [19]. Maturity and low costs in 
production can be achieved by combining plasmonics with 
well-developed photonics for passive components while 
co-integration with electronics has already been shown in hy-
brid [22] and monolithic [23] proof-of-concept transmitter 
demonstrations. 

In this paper, an overview over the plasmonic technology 
for optical communication is given. The latest progress in 
plasmonic modulators and detectors is presented with a focus 
on the electronic-photonic integration, and the advantages of 
plasmonics for future optical interconnects are elaborated. 

2. Plasmonics – High-Speed Photonics
Due to its unique advantages, plasmonic modulators and

detectors might become the key active components in future 
high-speed optical communication systems for chip-to-chip, 
short-reach and long-reach scenarios [3]. 
Plasmonic Modulators 

Plasmonics is a versatile high-speed platform offering so-
lutions for phase, intensity and amplitude modulation in ad-
vanced Mach-Zehnder (MZ) [13, 22] and IQ [19] configura-
tions. The modulators offer record 222 GBd symbol rate and 
400 Gb/s data rate per lane and wavelength. Such high speeds 
are reached due to an electro-optical bandwidth exceeding 
500 GHz [20] enabled by the compactness of plasmonic de-
vices. Both the electrical and optical field are confined to the 
plasmonic slot filled with an organic [26] or ferroelectric [16] 
nonlinear electro-optic material. The strong overlap enables 
efficient modulation and operation at low voltages. This ena-
bles low-energy applications [19] at CMOS-compatible volt-
ages [21]. Since plasmonic modulators are not bound to a 
photonic substrate [14] and can be parallelised on a ul-
tra-compact footprint [18], they offer a flexible Terabit solu-
tion for (monolithic) integration with electronics [23]. 
Plasmonic Detectors 

Plasmonic detectors are a high-speed and compact coun-
terpart with substrate flexibility, which enables cost-efficient 
co-integration [27, 28]. Although the detector technology has 
not yet reached the maturity of plasmonic modulators, 
proof-of-concept experiments with germanium [15] and gra-
phene [17] show promising results. An opto-electric band-
width beyond 110 GHz, a responsivity of 0.5 A/W, and a 
symbol rate of 100 GBd have been shown on only a few μm2 
footprint. 
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3. Co-Integration with Electronics
Plasmonics is ideal for co-integration with electronics due

its compact dimensions, high bandwidth, CMOS-compatible 
voltages and ease of parallelisation. Co-integration has been 
demonstrated in both hybrid and monolithic integration. 

Hybrid integration is the state-of-the-art technology for 
co-integration due its flexibility in electronic and photonic 
design, fabrication and performance optimisation. Yet, it 
comes at the price of high manufacturing and testing costs, 
and interconnection of two chips at the most critical position 
of highest data rate. This causes degradation in signal quality 
and eventually limited bandwidth. Nevertheless, an InP elec-
tronic and plasmonic transmitter shows record symbol rates 
of 222 GBd with non-return-to-zero on-off keying [22]. 

Fig. 1 Monolithic BiCMOS electronic-plasmonic transmitter [23]. 

Monolithic integration is considered the technology of the 
future as it combines electronics and photonics on a common 
substrate, which is expected to significantly reduce costs in 
manufacturing, assembly and testing. On top, the close prox-
imity will achieve highest signal bandwidth and quality. A 
monolithic BiCMOS electronic-plasmonic high-speed trans-
mitter has been demonstrated with symbol rates beyond 
100 GBd [23]. The monolithic integration has been achieved 
through co-design of electronic, photonic and thermal perfor-
mance. Fig. 1 depicts a blow-up of the transmitter chip with 
the electronic layers for 4:1 power multiplexing and the plas-
monic layer for light intensity modulation stacked onto a 
common substrate. The zoom-in shows how the plasmonic 
MZ modulator is directly connected to the electronic driver 
through on-chip vias. Two modulator concepts have been de-
veloped – a 120 GBd silicon-plasmonic modulator with pho-
tonic circuitry and a 100 GBd ultra-compact plasmonic mod-
ulator with 29 × 6 μm2 footprint. The monolithic approach is 
expected to reach unprecedented symbol rates beyond this 

first proof-of-concept demonstration as both BiCMOS elec-
tronics and plasmonics are not yet at their speed limitations. 

4. Conclusions
Plasmonics offers a future-proof photonic platform for

optical communications with high-speed solutions at the 
transmitter and the receiver. The compactness of plasmonics 
enables unique features such as high bandwidth, dense paral-
lelisation and co-integration with electronics. Hybrid co-inte-
gration showed a record-performance of 222 GBd while the 
world’s first 120 GBd monolithic integration demonstrates 
the technology’s readiness to tackle the optical communica-
tion challenges of this decade. 
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