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Abstract

The beneficial effects of alkali-metal doping in various
thin-film compound photovoltaic devices such as
Cu(In,Ga)Se:z (CIGS), CuzZnSnSs (CZTS), and organic-
inorganic hybrid perovskite solar cells have been attract-
ing attention as an important subject to develop photovol-
taic technologies. Although systematic knowledge of al-
kali-metal effects is key, the detailed mechanism behind
the alkali-effects in enhancing photovoltaic efficiencies
has been still unclear. In the present work, the effects of
light and heavy alkali-metals, namely Li and Cs, on CIGS
thin-film and device properties are focused upon and
comparatively studied using ternary CuGaSe: (CGS) and
quaternary CIGS. It is revealed that i) the beneficial ef-
fects of heavy alkali-metal doping in ternary CGS are
slight when compared to the effects obtained in quater-
nary CIGS, ii) CGS film surface morphology varies with
CsF-Postdeposition treatment (PDT), but a variation ob-
served with LiF-PDT is negligible and this trend is the
same as the result observed from CIGS, and iii) the nom-
inal carrier density (/Ncv) in both CGS and CIGS films
grown on soda-lime glass substrates shows no significant
increase with alkali-halide PDT regardless of the use of
LiF or CsF. Nonetheless, metastable acceptor formation
in CIGS is clearly enhanced with CsF-PDT in comparison
to LiF-PDT. Consequently, it is suggested that the effects
of elemental Li on CIGS are significantly different from
the effects obtained with the other alkali-metals Na, K, Rb,
and Cs.

1. Introduction

The effects of alkali-metal doping in Cu(In,Ga)Se;
(CIGS) solar cells which enhance photovoltaic efficiencies
were firstly reported in the 1990s [1]. In particular, the effects
of relatively light alkali-metal Na diffused from soda-lime
glass (SLG) substrates into CIGS photo-absorber layers were
focused upon. Today, not only elemental Na, but also heavier
elements such as K, Rb, and Cs are found to be more benefi-
cial to obtain enhanced CIGS photovoltaic performance [2-4]
and thus our interests have shifted to heavier elements such
as Rb and Cs. In contrast to CIGS, the beneficial effects of
light alkali-metal Li in CuzZnSnS, (CZTS) solar cells have

been reported in the literature for recent years [5]. On the
other hand, the effects of light alkali-metal Li doping in CIGS
have been not discussed to date. In the present work, therefore,
the effects of light Li and heavy Cs alkali-halide postdeposi-
tion treatment on CIGS solar cells are comparatively studied
using ternary CuGaSe, (CGS) and quaternary CIGS. System-
atic knowledge of alkali-metal effects is essential and is ex-
pected to contribute to developments in compound thin-film
photovoltaic technologies including chalcopyrite CIGS, kes-
terite CZTS, and organic-inorganic hybrid perovskite solar
cells as well.

2. Experimental Section

The detailed CGS and CIGS film growth conditions, de-
vice fabrication procedures, and characterization methods
used can be found in our previous reports [6,7]. Briefly, CGS
and CIGS ([Cu]/([Ga] + [In]) ~ 0.9, [Ga]/([Ga] + [In]) ~ 0.3)
films were grown by the three-stage process on alkali-free zir-
conia and alkali-containing SLG substrates. Postdeposition
treatment (PDT) with alkali-halides LiF and CsF were per-
formed using Knudsen cell sources at a substrate temperature
of 350°C (Knudsen cell source temperatures of the LiF and
CsF sources were in the range of 790-830°C and 480°C, re-
spectively). The duration of PDT performed in this study was
10 or 20 min. The structure of solar cell devices fabricated
and used for characterizations in this study was substrate (zir-
conia or SLG)/Mo/(CGS or CIGS)/CdS/Zn0O/Zn0O:Al. CGS
and CIGS films and devices were characterized using scan-
ning electron microscopy (SEM), secondary ion mass spec-
trometry (SIMS), capacitance-voltage (C-V) and current-volt-
age (/-V) measurements.

3. Results and discussion
Ternary CGS Solar Cells

Figure 1 shows cross-sectional and surface SEM images
for ternary CGS films grown using the experimental condi-
tions of control (without PDT), LiF-PDT, and CsF-PDT. It is
found from the cross-sectional SEM images that CGS films
grown on alkali-free zirconia substrate possess a small grain
size region in the film surface (we have observed the similar
trend on alkali-free sapphire substrates as well [6]), whereas
CGS films grown on SLG substrates possess a small size
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grain region near the Mo back contact layer. This result is at-
tributable to the presence of alkali-metal impurities during
film growth. It is generally known that relatively heavy alkali-
halide PDT leads to the formation of pores resulting in a
rough surface morphology of CIGS films. Figure 1b indicates
that CGS film surface became rough with CsF-PDT, similar
to the case for CIGS. LiF-PDT, however, led to no significant
variation in the surface morphology, implying that slight ef-
fects in the surface (CGS/CdS interface in the solar cell de-
vice structure) modification with LiF-PDT are expected.
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Fig. 1 (a) Cross sectional and (b) surface SEM images for as-grown
and washed (in dilute ammonia solution) CGS films
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Fig. 2 Variations of Ncv for CGS devices fabricated on alkali-free

zirconia and alkali-containing SLG substrates with and without PDT.

Figure 2 shows nominal carrier density (Ncv) calculated
from C-V measurement results. CsF-PDT was found to be ef-
fective in increasing hole carrier density in CGS films grown

on alkali-free substrates, whereas LiF-PDT was revealed to
have very mild effects. Note that these CsF-PDT and LiF-
PDT CGS films (left figure) contain alkali-metal Cs or Li of
the order of 10'8-10'° cm. This trend was similar to the result
observed from the Ncvy variations in CIGS films [7].
Quaternary CIGS Solar Cells

CIGS solar cells fabricated with relatively heavy alkali-
halide (such as KF and RbF) PDT are known to demonstrate
enhanced photovoltaic efficiencies with the use of a thinner
CdS buffer layer (conventional [without PDT]: ~50 nm —
PDT: ~30 nm). It was found, however, that LiF-PDT CIGS
could not demonstrate enhanced efficiencies with such a thin
CdS layer as shown in Fig. 3, indicating that LiF-PDT has no
beneficial effects on the CIGS/CdS interface modification to
enable the employment of a thinner CdS layer. Nevertheless,
LiF-PDT was found to have an effect of photovoltaic perfor-
mance improvements, though the effects were mild when
compared to that obtained with Na or heavier alkali-metals.
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Fig. 3 Variations of photovoltaic efficiencies for CIGS solar cells
grown on SLG substrates with CsF-PDT (left) and LiF-PDT (right).
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4. Conclusions

In this study, the effects of the lightest alkali-metal Li-
doping in CGS and CIGS were comparatively studied with
the effects of heavy alkali-metals. The effects of elemental Li
on CGS and CIGS were found to be very unique and signifi-
cantly different from the effects obtained with the other al-
kali-metals such as K, Rb, and Cs, and also different from
relatively light alkali-metal Na.
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