Degenerately Doped p⁺-MoS₂ as a High Work Function Electrode Material in van der Waals Heterostructure

Rai Moriya¹, Kei Takeyama¹, Satoru Masubuchi¹, Kenji Watanabe², Takashi Taniguchi^{3,1}, and Tomoki Machida¹

 ¹ Institute of Industrial Science, University of Tokyo 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan Phone: +81-5452-6158 E-mail: moriyar@iis.u-tokyo.ac.jp
² Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki, Tsukuba 305-0044, Japan
³ International Center for Materials Nanoarchitectonics, National Institute for Materials Science 1-1 Namiki, Tsukuba 305-0044, Japan

Abstract

Fabrication of a low resistance p-type ohmic contact to transition metal dichalcogenide (TMD) semiconductor WSe₂ at low temperatures has been challenging to date. Here, we demonstrate low-temperature ohmic contact to WSe2 using a van der Waals (vdW) contact of highly pdoped MoS₂ (p⁺-MoS₂). The p⁺-MoS₂ exhibits a work function comparable to a well-known large work function metal of Pt. In addition to this, due to its layered crystal structure, the p^+ -MoS₂ is easily exfoliatable to obtain atomically flat freshly cleaved surface and stable in the air; thereby, this material can be used for efficient holeinjection contact for TMD semiconductor WSe2. We fabricated h-BN encapsulated WSe2 field-effect transistor (FET) having two flakes of exfoliated p⁺-MoS₂ as electrical contacts. The fabricated FET demonstrated ohmic contact behavior under hole doping in the temperature range from room temperature to liquid helium temperature. Owing to the low contact resistance of the p⁺-MoS₂/WSe₂ junction, we demonstrated quantum oscillation at low temperature under the application of the magnetic field. Our study proves that the p⁺-MoS₂/WSe₂ vdW contact is an effective low temperature ohmic contact for the application to optoelectronic devices based on vdW heterostructures [1].

1. Introduction

WSe₂ is a transition metal dichalcogenide (TMD) material semiconductor having a layered crystal structure. This material has been extensively studied due to its superior electrical and optical properties compared to other TMD materials. Further, with recent developments of van der Waals (vdW) heterostructure assembly techniques [2], researchers are now able to construct *h*-BN encapsulated high-quality WSe₂-based heterostructures. These guide the researches to explore the quantum transport or quantum optics of WSe₂ at liquid helium temperature. Nevertheless, a demonstration of low resistance p-type ohmic contact to the WSe₂ in such a low temperature has been still challenging [3]. Fig. 1(a) illustrates the conduction band (CB) and valence band (VB) alignment between different multilayer thick TMD semiconductors and work functions of metallic contacts. Previous studies revealed that the metal/WSe₂ interface exhibits a strong Femi-level pinning effect when one fabricates an electrical contact with metal deposited on the surface of WSe2. In contrast, the use of metallic 2D material for contact electrode to semiconducting 2D material by constructing a vdW junction [3], enables us to construct an atomically flat as well as a self-cleaning interface on which impurities can be pushed out from the side during construction of the vdW interface. Thus, air-stable ptype vdW metallic contact with WSe₂ is in high demand. Here, we noticed that according to Fig. 1(a), the energy of VB level of MoS₂ relative to the vacuum level is highest among common TMD materials and is almost comparable to that of Pt which is a well-known large work function metal. In addition to this, recently, high p-doping on MoS₂ is demonstrated by Nb doping. Therefore, the Nb-doped $p^{\scriptscriptstyle +}\text{-}MoS_2$ can be a great candidate for hole injection contact for TMD semiconductors. In this study, we fabricated h-BN encapsulated WSe2 field effect transistors (FET) having two of the exfoliated flakes of p⁺-MoS₂ as contact materials and investigated their low temperature transport properties.

2. Results

A schematic illustration of the fabricated devices is shown in Fig. 1(b). A ~5 monolayers (ML)-thick WSe₂ flakes are encapsulated between thick (~30 nm) *h*-BN flakes. Flakes of Nb-doped p⁺-MoS₂, typically thicker than ~20 nm, were contacted to the WSe₂ to construct vdW contact between p⁺-MoS₂ and WSe₂ [Fig. 1(c)]. The hole carrier density of Nbdoped p⁺-MoS₂ crystal is 3×10^{19} cm⁻³. Both nondoped-WSe₂ and Nb-doped p⁺-MoS₂ bulk crystals are fabricated by chemical vapor transport (CVT) method and purchased from HQ Graphene Inc. Fabrication of the devices was performed by using vdW pick-up method. Finally, electrical contacts to p⁺-MoS₂ were made by electron beam (EB) lithography to create electrode shape patterns and EB evaporation of 70 nm-thick Au/10 nm-thick Pd as an electrode material.

A two-terminal current-voltage $(I-V_{SD})$ characteristic of the device 1 has been measured at 1.6 K under the application of different back-gate voltage (V_{BG}) values to doped Si substrate and results are shown in Fig. 2(a). This measures all of bulk and junction resistances of Au/Pd/p⁺-MoS₂/WSe₂/p⁺- MoS₂/Pd/Au structure. As we show later, dominant resistance contribution is p⁺-MoS₂/WSe₂/p⁺-MoS₂ structure; the resistance contribution from two of Au/Pd/p⁺-MoS₂ junction is playing a minor role (~1 k Ω in total). At the highest V_{BG} value of -70 V, the device demonstrated linear $I-V_{SD}$ and ohmic behavior even at 1.6 K. With increasing V_{BG} to $V_{BG} = -60$ and -50 V, the $I-V_{SD}$ curve is changing to non-ohmic behavior. $I-V_{SD}$ curves at room temperature (RT) in Fig. 2(b) show ohmic behavior in wider range of V_{BG} values such that it is ohmic at $V_{BG} \leq -30$ V. Overall, our WSe₂ transistor works as p-type FET as depicted in the back-gated transfer characteristics in Fig. 3.

The high quality of the fabricated 5ML-WSe₂ FET exhibited quantum oscillation with two-terminal resistance measurement at 1.6 K under the application of perpendicular magnetic field of *B* and $V_{BG} = -70$ V as shown in Fig. 4. Here, resistance measurement was performed under the application of AC current of 100 nA and detect AC voltage with lock-in amplifier. In the inset figure, we show oscillating component of resistance ΔR extracted by subtracting the background, non-oscillating component of *R* using polynomial function. Above the magnetic field B = 4 T, a quantum oscillation in WSe₂ is clearly visible. This is a piece of evidence that p⁺-MoS₂/WSe₂ interface is having low junction resistance and at the same time, WSe₂ channel is maintained its high quality.

Figures

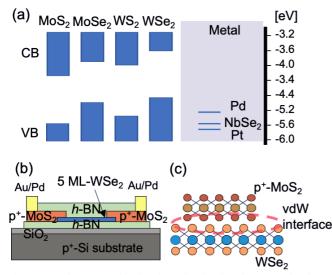


Fig. 1: (a) The energy levels of conduction band (CB) and valence band (VB) of different TMD materials and work function of common metals. (b) Schematic illustrations of the device structure. (c) An illustration of vdW interface at p⁺-MoS₂/WSe₂.

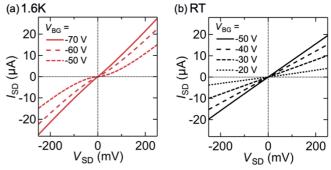


Fig. 2: (a,b) Two-terminal $I_{SD}-V_{SD}$ characteristics of the device at (a) 1.6 K and (b) RT measured at different V_{BG} values.

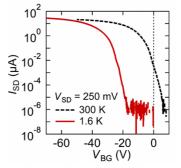


Fig. 3: The $I_{SD}-V_{BG}$ characteristics of the device at two different temperatures measured under the application of $V_{SD} = 250$ mV.

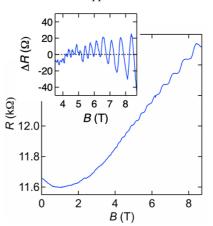


Fig. 4: Two-terminal resistance *R* as a function of out-of-plane magnetic field *B* measured at 1.6 K. Inset: ΔR as a function of *B*.

Acknowledgements

This work was supported by CREST, Japan Science and Technology Agency (JST) under grant number JPMJCR15F3 and the Japan Society for the Promotion of Science (JSPS) KAKENHI under grant numbers JP19H02542, JP19H01820, JP20H00127, and JP20H00354.

References

- K. Takeyama, R. Moriya, K. Watanabe, S. Masubuchi, T. Taniguchi, T. Machida, submitted
- [2] M. Onodera, S. Masubuchi, R. Moriya, and T. Machida, Jpn. J. Appl. Phys. 59, 010101 (2019).
- [3] Y. Sata, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, and T. Machida, Jpn. J. Appl. Phys. 56, 04CK09 (2017).