Ar/N₂ gas flow ratio dependence on the high-k LaB_xN_y thin film characteristics formed by RF sputtering

Kyung Eun Park, Hideki Kamata, and Shun-ichiro Ohmi

Tokyo Institute of Technology

J2-72, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan Phone: +81-45-924-5473, E-mail: park.k.ab@m.titech.ac.jp, ohmi@ee.e.titech.ac.jp

Abstract

In this paper, the Ar/N_2 gas flow ratio dependence on the high-k LaB_xN_y thin film characteristics formed by RF sputtering was investigated. The hysteresis and equivalent oxide thickness (EOT) were decreased from 32 mV to 16 mV and from 8.1 nm to 5.7 nm, respectively by increasing the Ar/N_2 gas flow ratio from 10/3 sccm to 10/7 sccm. Furthermore, the density of interface states (D_{it}) was decreased by increasing N₂ gas flow ratio.

1. Introduction

The nitrogen-doped (N-doped) LaB_6 has low resistivity, high melting-point and chemical stability. Furthermore, it was realized a low work function of 2.4 eV with oxidation immunity by suppressing the oxygen concentration below 0.3 % [1-2].

In the previous study, we have reported the improved N-doped LaB₆ thin film characteristics deposited on the SiO_2/p -Si(100) structures [3]. Furthermore, the high-k LaB_xN_y thin film formed by Ar/N₂ plasma reactive sputtering and its application to the floating-gate memory was investigated. However, the investigation of LaB_xN_y layer formation was still required to improve the dielectric characteristics [4-5].

In this paper, we investigated the effect of the Ar/N_2 gas flow ratio on the characteristics of the high-k LaB_xN_y gate dielectric layer with N-doped LaB₆/LaB_xN_y/p-Si(100) gate stack structure formed by RF sputtering.

2. Experimental Procedure

Figure 1 shows the experimental procedure of this research. The p-Si(100)(10-30 Ω cm) substrate was cleaned by SPM and DHF, and the rinse process was performed with ultra-pure water (UPW, ORGANO I) for 10 min after each cleaning process. Next, the N-doped LaB₆/LaB_xN_y structure with a thickness of 20/10 nm was in-situ deposited on p-Si(100) by RF sputtering at room temperature (RT). The N-doped LaB₆ target was used (N: 0.4%) in this study. In the case of the LaB_xN_y insulating layer, the sputtering power was 7 W and the Ar/N₂ gas flow ratios were changed as 10/3-10/7 sccm with the gas pressure of 0.37 Pa-0.45 Pa. The post-metallization annealing (PMA) process was carried out at 400° C/1 min with N₂ (1 SLM) ambient followed by the patterning with diluted nitric acid (HNO₃:H₂O=1:1). The pattern size was $30 \times 30 \ \mu m^2$. Finally, back Al electrode was formed by thermal evaporation.

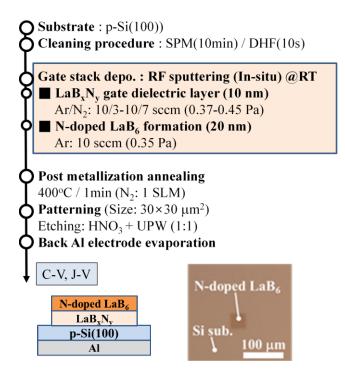


Fig. 1 Experimental procedure for the fabrication of the N-doped $LaB_6/LaB_xN_y/p$ -Si(100) diodes.

The surface morphology was observed by optical microscopy. The C-V and J-V characteristics were measured by Agilent 4284A and 4156C, respectively.

3. Results and Discussion

Figure 2 shows the C-V characteristics for N-doped LaB₆/LaB_xN_y/p-Si(100) diode. The C-V curve was obtained from voltage range of ± 1 V. The maximum capacitance was increased from 0.35 μ F/cm² to 0.53 μ F/cm² by increasing Ar/N₂ gas flow ratio from 10/3-10/7 sccm. From these results, the extracted equivalent oxide thickness (EOT) was decreased from 8.1 nm to 5.7 nm as shown in Fig. 3. Furthermore, the hysteresis was decreased from 32 mV to 16 mV by increasing Ar/N₂ gas flow ratio from 10/3 sccm to 10/7 sccm.

Figure 4 shows the extracted density of interface states (D_{it}) of N-doped LaB₆/LaB_xN_y/p-Si(100) diode through Terman method. The minimum D_{it} of Ar/N₂ gas flow ratio of 10/3 sccm was 2.1×10^{11} cm⁻²eV⁻¹. On the other hand, in the case of the D_{it} of Ar/N₂ gas flow ratio of 10/7 sccm showed 8.2×10^{10} cm⁻²eV⁻¹.

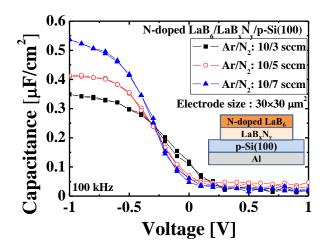


Fig.2 C-V characteristics of N-doped LaB_6/LaB_xN_y/p-Si(100) diodes.

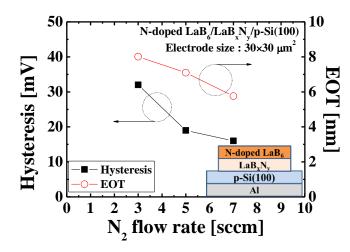


Fig.3 Results of the hysteresis and EOT dependence on the Ar/N_2 sputtering gas flow ratio.

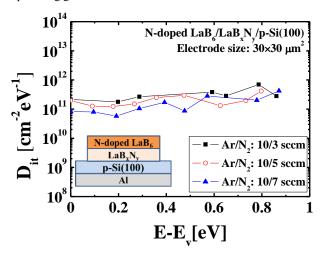


Fig.4 Interface state densities of N-doped $LaB_6/LaB_xN_y/p$ -Si(100) diode obtained by Terman method.

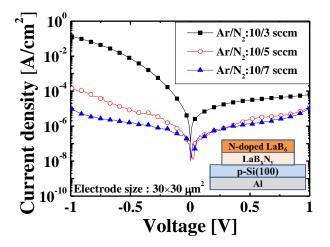


Fig.5 J-V characteristics of N-doped $LaB_6/LaB_xN_y/p\mbox{-}Si(100)$ diodes.

Figure 5 shows the J-V characteristics of N-doped LaB₆/LaB_xN_y/p-Si(100) diode. The current density at 1 V was decreased from 6×10^{-5} A/cm² to 1×10^{-5} A/cm² by increasing Ar/N₂ gas flow ratio from 10/3 to 10/7 sccm.

These results indicate that the increasing of N_2 gas flow ratio is effective to improve the dielectric characteristics of the LaB_xN_y gate insulating layer.

4. Conclusion

In this study, we investigated the Ar/N_2 gas flow ratio dependence on the high-k LaB_xN_y thin film characteristics formed by RF sputtering. The dielectric characteristics of the LaB_xN_y gate dielectrics were improved by increasing N₂ sputtering gas flow ratio. Therefore, the control of the N₂ sputtering gas flow ratio would be effective to realize the thinning of the LaB_xN_y tunnel layer to improve the memory characteristics of N-doped LaB₆/LaB_xN_y/N-doped LaB₆/LaB_xN_y/p-Si(100) structure of floating gate device [4-5].

Acknowledgements

This research was partially supported by NIMS Joint Research Hub Program.

References

- [1] H. Ishii et al., ECS Trans., 66, pp.23-28 (2015).
- [2] K. Nagaoka et al., Vacuum, 170, 108973 (2019).
- [3] K. E. Park *et al.*, IEICE Trans. Electron., **103**, 6, pp.293-298 (2020).
- [4] K. E. Park *et al.*, The 78th Device Research Conference, pp.140-141 (2020).
- [5] K. E. Park *et al.*, The 81st JSAP Autumn meeting, 11p-Z10-7 (2020). [to be presented]