The velocity structure beneath the Aira caldera, deduced from the seismic exploration (4)

*Hiroki Miyamachi¹, Reji Kobayashi¹, Hiroshi Yakiwara¹, Shuuichiro Hirano¹, Takeshi Kubo¹, Naohiro Unno¹, Takeshi Matsushima², Kazuya Uchida², Rintaro Miyamachi², Hiroshi Katai³, Takuo Shibutani³, Tsutomu Miura³, Jun Nakagawa³, Itaru Yanada³, Takeshi Tameguri³, Kosei Takishita³, Kazuho Nakai³, Yusuke Yamashita³, Yuta Maeda⁴, Shinichirou Horikawa⁴, Kenjiro Mitsuhiro⁴, Takashi Okuda⁴, Shuhei Tsuji⁴, Naoki Sogawa⁴, Kazuo Nakahigashi⁵, Eiji Kurashima⁶, Tomoaki Yamada⁶, Miwako Ando⁶, Shinichi Tanaka⁶, Satoshi Ikezawa⁶, Toshinori Sato⁷, Mare Yamamoto⁸, Satoshi Hirahara⁸, Takashi Nakayama⁸, Ryusuke Azuma⁸, Shuichi Suzuki⁸, Tomoki Tsutsui⁹, Ryuichi Takei⁹, Yuya Tada⁹, Hiroaki Takahashi¹⁰, Hiroshi Aoyama¹⁰, Mako Ohzono¹⁰, Takahiro Shiina¹⁰, Masamitsu Takada¹⁰, Masayoshi Ichiyanagi¹⁰, Teruhiro Yamaguchi¹⁰, Chihiro Ito¹⁰, Yuki Susukida¹⁰, Yoshio Murai¹⁰, Tatsuya Nakagaki¹⁰

1. Kagoshima University, 2. Kyushu University, 3. Kyoto University, 4. Nagoya University, 5. TUMSAT, 6. University of Tokyo, 7. Chiba University, 8. Tohoku University, 9. Akita University, 10. Hokkaido University

[1]人工地震探査概要

南九州の大隅半島〜姶良カルデラ〜薩摩半島〜甑海域を東西に横断する約165 km長の人工地震探査測線を設定し、2017年と2018年に観測を実施した。陸域の測線上に約100m間隔で830点、海域の測線上には1 kmまたは2 km間隔で42点の観測点を展開した。人工震源には、2017年は陸域で9カ所の爆薬震源(各薬量200kg)を、2018年はエアガン(容量6000 cubic inch)を海域測線上で100m(一部の区間では50m)間隔で発震すると共に、陸域では大型バイブレータ4台による多重発震を使用した(JpGU、2019)。

[2] 走時データと解析手法

2018年のエアガン震源による走時データは膨大な量であるため、今後、データ整理が終わり次第、データ解析に用いる。今回は、2017年度のP波初動走時データに2018年の観測で得られた新たなP波初動走時データの一部を加え、解析を実施した。解析手法は、これまでと同様に、二次元トモグラフィー法(LTI法(Asakawa and Kawanaka, 1993)、SIRT法)である。高密度な観測点配置と高密度な爆薬震源及びエアガン発震を考慮し、トモグラフィー法における各セルサイズを200m×200mとし、測線下の詳細な速度構造(暫定版)の推定を試みた。また、エアガン発震時に曳航したストリーマーケーブルのデータの解析も行った。

[3]解析結果

ストリーマーケーブルデータの解析により、測線B(桜島の北方海域)では、水平成層を示唆する複数の明瞭な反射面が深さ2km以浅で確認できた。一方、測線H(桜島の南方海域)測線D(甑海域)では、多くの断裂構造が検出された。

主測線下の速度構造については、データ量が増えたことにより、従来の解析結果よりも、より安定した解が得られる傾向である。発表時に詳細を報告する.