日本地球惑星科学連合2015年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM07] Space Weather, Space Climate, and VarSITI

2015年5月25日(月) 11:00 〜 12:45 302 (3F)

コンビーナ:*片岡 龍峰(国立極地研究所)、海老原 祐輔(京都大学生存圏研究所)、三好 由純(名古屋大学太陽地球環境研究所)、清水 敏文(宇宙航空研究開発機構宇宙科学研究所)、浅井 歩(京都大学宇宙総合学研究ユニット)、陣 英克(情報通信研究機構)、佐藤 達彦(日本原子力研究開発機構)、草野 完也(名古屋大学太陽地球環境研究所)、宮原 ひろ子(武蔵野美術大学造形学部)、中村 卓司(国立極地研究所)、塩川 和夫(名古屋大学太陽地球環境研究所)、伊藤 公紀(横浜国立大学大学院工学研究院)、座長:清水 敏文(宇宙航空研究開発機構宇宙科学研究所)

12:15 〜 12:30

[PEM07-17] プロミネンスからコロナキャビティに渡って成り立つ温度-密度間の冪乗則

*金子 岳史1横山 央明1 (1.東京大学)

キーワード:太陽プロミネンス, 太陽フィラメント

In this study, we discuss the formation mechanism of a solar prominence by the radiative condensation by using MHD simulations including optically thin radiative cooling and thermal conduction. Our main focus is on the relationship between the temperature and density in a prominence and its coronal cavity.
Solar prominences are the cool dense plasma clouds in the hot tenuous corona. The formation model of prominences has not been established completely. The radiative condensation is believed to be a key process.
In the previous study, we proposed a model through the radiative condensation triggered by the formation of a flux rope: The flux rope is formed by the reconnection after imposing converging and shearing motion on the footpoints of the coronal arcade field. The radiative condensation is triggered by the thermal nonequilibrium inside the flux rope. We have demonstrated this model in our simulations and found an empirical scaling law between the temperature and the density of a prominence.
The remained issues in our previous study were that the prominence in our simulations had much higher temperature than that of the observed one, and that the physical meaning of the scaling law was unclear due to the unrealistic small contrast of temperature and density between the prominence and the corona.
In this study, we allow the prominence temperature in our simulations to be lower, and reproduce more realistic prominences. As a result, we successfully extend the previous empirical scaling law to a power law both in a prominence and its surrounding coronal cavity. We also found that the power depends on the temperature gradient of each field line.