日本地球惑星科学連合2019年大会

講演情報

[E] 口頭発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS03] Solar System Small Bodies: A New Frontier Arising Hayabusa 2, OSIRIS-REx and Other Projects

2019年5月28日(火) 15:30 〜 17:00 A01 (東京ベイ幕張ホール)

コンビーナ:石黒 正晃(ソウル大学物理天文学科)、中本 泰史(東京工業大学)、安部 正真(宇宙航空研究開発機構宇宙科学研究所)、Olivier S Barnouin(Johns Hopkins University Applied Physics Laboratory)、座長:Masanao Abe(Institute of Space and Astronautical Science, JAXA)

16:15 〜 16:30

[PPS03-16] LIDARデータおよび形状モデルを組み合わせた「はやぶさ2」探査機軌道改良

*松本 晃治1野田 寛大1石原 吉明2千秋 博紀3山本 圭香1平田 成4平田 直之5並木 則行1大坪 俊通6渡邊 誠一郎7水野 貴秀8山本 幸生8池田 人8尾川 順子8菊地 翔太8佐伯 孝尚8津田 雄一8 (1.国立天文台RISE月惑星探査検討室、2.国立環境研究所、3.千葉工業大学、4.会津大学、5.神戸大学、6.一橋大学、7.名古屋大学、8.宇宙航空研究開発機構)

キーワード:はやぶさ2、探査機軌道、レーザ高度計

Hayabusa2 spacecraft successfully arrived at the target C-type asteroid 162173 Ryugu on 27 June, 2018, with its “home position” being about 20 km above the sub-Earth point. Soon after arrival, Hayabusa2’s remote sensing instruments started near-global observations. Because map products from these instruments depend on the spacecraft position with respect to the asteroid, it is necessary to provide precise spacecraft trajectory in a timely manner. The basic idea is to find a trajectory correction which makes “LIDAR-derived topography” fit to the reference shape model. The LIDAR-derived topography is, in other words, a sequence of LIDAR footprint positions expressed in asteroid-centered body-fixed rotating frame. The footprints can be computed by using the following information; spacecraft position with respect to the asteroid, spacecraft attitude, LIDAR range, rotational information of the asteroid (orientation and spin period). If all the information above was perfect, the collective footprints would delineate the shape of the asteroid. In reality, however, there are various errors affecting the footprint positions, among which the largest is generally the trajectory error, making the resultant LIDAR footprints deviate from the shape model. We call the deviation as residual. A shape model constructed by stereo photoclinometry (SPC) method is used as reference. We obtain trajectory correction by minimizing the residuals with polynomial functions. We made use of Markov chain Monte Carlo (MCMC) algorithm to explore better parameters. We compared the LIDAR-corrected trajectory with camera positions that are determined through SPC shape modeling. The two estimates agree with each other within about 40 m on 10 July 2018, and 20 m on 20 July 2018. LIDAR-derived topography with such an improved trajectory can be used for analysis of boulder height, crater shape, surface roughness, etc.