[2Xin5-16] 無機材料科学分野における合成手順が記載された文献からの目的材料名称の抽出
キーワード:情報抽出、自然言語処理、材料インフォマティクス
無機材料分野では,論文中の合成物(目的材料)に着目し,その物理的性質を分析するため,論文から目的材料を抽出する研究が行われている.一方で,従来の固有表現抽出では,論文で主張する対象の合成物を抽出できているのかという疑問が存在する.そこで我々は,論文に対して,その論文の主張する合成物である目的材料のみに限定してラベル付けをしたコーパスを作成し,そのコーパスに対して,従来の固有表現抽出タスクにおいて高い性能を示している深層学習モデルを適用し,その抽出性能を評価した.その結果,深層学習モデルによる目的材料の抽出において,一般的に固有表現抽出タスクで報告されている抽出性能よりも低い抽出結果が得られた.我々は,この原因を,従来の固有表現抽出タスクの設定が論文からの合成物抽出タスクに適していないためだと考察し,従来のタスク設定の問題点と改善策について述べる.
講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。