[2Yin5-11] セマンティックセグメンテーションに基づく空間カテゴリと案内標識の認識による大域的自己位置推定
キーワード:人工知能、自己位置推定
ロボットが自律移動を行うためには自己位置推定が必要である.大域的自己位置推定は,周辺環境から観察された空間特徴に基づいて自己位置を推定する手法であり,一般に,初期位置が未知であったり自己位置を見失ったりした場合に用いられる.我々は,360°全方位画像の分類により得られる空間カテゴリとセマンティックセグメンテーションにより得られるセグメント分布から自己位置を推定するニューラルネットワークモデルを構築してきた.本論では,本モデルに空間カテゴリの詳細な分類と案内標識の認識とを追加して,大域的自己位置推定の性能を向上させるモデルを提案する.空間カテゴリの詳細な分類ではインスタンスレベルの分類を導入する.案内標識の認識では案内標識セグメントに対して光学文字認識を適用する.大域的自己位置推定は,これら空間インスタンス,案内標識,及びセグメント分布に基づき,自己位置をあらかじめ与えた粒度の空間分割のもとで推定することによりなされる.いくつかの空間分割粒度のもとで自己位置を推定する実験を通じて,インスタンスレベルの空間分類と案内標識の認識を加えることの大域的自己位置推定における効果を検証した.
講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。