2022年第83回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

10 スピントロニクス・マグネティクス » 10.1 新物質・新機能創成(作製・評価技術)

[22a-B201-1~11] 10.1 新物質・新機能創成(作製・評価技術)

2022年9月22日(木) 09:00 〜 12:00 B201 (B201)

窪田 崇秀(東北大)、岡林 潤(東大)

10:45 〜 11:00

[22a-B201-7] Machine Learning Study of Highly Spin-Polarized Heusler Alloys at Finite Temperature

〇(D)Ivan Kurniawan1,2、Yoshio Miura1,3、Kazuhiro Hono1,2 (1.NIMS、2.Univ. of Tsukuba、3.Osaka Univ.)

キーワード:First-principles, Finite temperature, Machine learning

Strong reduction of magnetoresistance (MR) ratio in Heusler alloys based MR devices at finite temperature implies the importance of exploration of new highly spin-polarized Heusler alloys. However, recent high throughput calculation and machine learning combined with first principles to find prospective Heusler alloys only performed with 0 K assumption, which lead to the significant discrepancy of material prediction with experiments. In this work, we carried out the finite temperature first-principles calculation combined with machine learning to find new Heusler alloys. We employed Bayesian optimization for the machine learning algorithm and the disordered local moment method for finite temperature effect, respectively. We successfully found several new prospective Heusler alloys with high spin polarization such as Co2MnGa0.2As0.8 and Co2FeAl0.4Sn0.6. Furthermore, the effect of alloy mixing on the temperature dependence of Co2MnGayAs1-y and Co2FeAlySn1-y is also discussed.