資源・素材2024(秋田)

講演情報(2024年8月7日付 確定版)

一般講演

【一般講演】 開発機械/ 岩盤工学/ 資源開発技術 [9/12(木) PM 第1会場]

2024年9月12日(木) 13:00 〜 15:15 第1会場 (一般教育2号館 1F 101) (一般教育2号館 1F 101)

司会:小林 和弥(京都大学)、玉村 修司(幌延地圏環境研究所)

●開発機械:資源生産や地下空間利用のために用いられる技術について、岩盤掘削・破砕やその制御など、計測や機械工学的側面を中心とした議論を行う。

●岩盤工学:岩盤の力学特性,地山応力など、地下の岩盤の状態の把握に必要な基礎的な試験技術,解析技術、そしてこうした技術を用いたケーススタディについて議論を行う。

●資源開発技術:エネルギーや金属鉱物などの資源の開発に必要な上流から下流までの開発・生産の技術に関する科学的・技術的な現状および課題について議論を行う

<発表時間20分中、講演15分、質疑応答5分/1件>

13:00 〜 13:20

[3108-13-01] Investigation of Discrepancies in Tensile Strength and its Strain-rate Values of Rock in a Spalling Test under Various Evaluation Methods using 3D GPGPU-Accelerated Hybrid FEM/DEM

○GYEONGJO Min MIN1, Daisuke Fukuda1, Sewook Oh2, Sangho Cho3 (1. Hokkaido University, 2. Korea Institute of Geoscience and Mineral Resources, 3. Jeonbuk National Univerisity)

司会:小林 和弥(京都大学)

キーワード:Dynamic Tensile Strength, Spalling Test, High Strain-rate Conditions, GPGPU-accelerated Hybrid FEM/DEM, Dynamic Tensile Fracture Process of Rock

The spalling test is widely applied to evaluate the dynamic tensile strength of rock under high strain-rate conditions. This test indirectly measures dynamic tensile strength by theoretically assuming the tensile stress level at the failure position of a cylindrical specimen based on 1D stress wave propagation theory. However, the theoretical estimation method for dynamic tensile strength has not been rigorously validated due to insufficient understanding of the fracture process, such as crack propagation and stress distribution in the rock specimen during the spalling test. This gap in understanding is primarily due to observational limitations in experimental setups.

To address this, a proper validation method is required, and numerical simulation offers a viable approach by reproducing the tensile fracture process of the rock specimen during the spalling test. In this study, we reproduced the dynamic spalling tensile test for rock specimens using the GPGPU-based 3D hybrid FEM/DEM that we recently developed. The simulation analyzed the dynamic tensile fracturing process under various strain-rate conditions.

Our findings include an in-depth analysis of the dynamic tensile fracturing process and a discussion on the application of various theoretical estimation methods to the 3D spalling test. The use of the GPGPU-accelerated hybrid FEM/DEM allows for a more detailed and comprehensive understanding of the fracture mechanics involved, thus providing a robust validation of the proposed theoretical estimation methods.