2024年春の年会

講演情報

一般セッション

V. 核燃料サイクルと材料 » 501-2 核燃料とその照射挙動

[2E01-04] データ科学・機械学習による燃料研究・高速炉リサイクル

2024年3月27日(水) 09:30 〜 10:30 E会場 (21号館3F 21-313)

座長:廣岡 瞬(JAEA)

09:30 〜 09:45

[2E01] New Developments in Nuclear Fuel Research through Integration with Data Science

(8) Harnessing Machine Learning for the Discovery of High Thermal Conductivity Fuel Candidates

*Yifan Sun1, Masaya Kumagai1, Mingyu Jin1, Eriko Sato1, Masako Aoki1, Yuji Ohishi2, Ken Kurosaki1,3 (1. Kyoto Univ., 2. Osaka Univ., 3. Univ. of Fukui)

キーワード:Advanced nuclear fuel, Machine learning, Thermal conductivity

In the wake of the Fukushima Daiichi Nuclear Power Plant incident, the development of advanced nuclear fuels has become a priority. While promising high-density fuels like UN and U3Si2 have been proposed, they are still far from commercially applicable, underscoring the need to explore a broader range of uranium compounds. Our study aims to expedite this exploration process by introducing a machine learning model capable of identifying uranium compounds with high thermal conductivity. This classification model was trained on 168,916 data points to predict thermal conductivity based on a compound’s composition and temperature. The model successfully identified 119 stable uranium compounds with thermal conductivities exceeding 15 W/mK, offering a significant leap forward in the search for advanced nuclear fuels.

予稿パスワード認証
予稿集購入者向けのパスワード入力ボックスです。
参加者は、参加者用ログインからログインすると、予稿閲覧可能です。
ログインIDとパスワードは参加料決済後にメールで通知しています。

パスワード