2024年春の年会

講演情報

一般セッション

III. 核分裂工学 » 305-1 計算科学技術

[2M15-21] 大規模シミュレーション

2024年3月27日(水) 16:10 〜 18:00 M会場 (21号館4F 21-424)

座長:稲垣 健太(電中研)

17:40 〜 17:55

[2M21] Development of LSTM models for the combined forecasting and diagnosis of PWR LOCA accident events

*Johndel Baluyot Obra1, Shuichiro Miwa1 (1. UTokyo)

キーワード:Nuclear safety, Real-time diagnostics, Deep learning, LSTM, LOCA

The real-time diagnosis of loss of coolant accidents (LOCA) in a pressurized water reactor (PWR) by forecasting the progress of the accident and predicting its cause is important in aiding plant operators with their decision-making process and accident response strategy. In a previous work, the potential of Long Short-Term Memory (LSTM) models in accident diagnosis was established by predicting the extent of pipe damage and location of pipe break from simulated LOCA events that were generated from RELAP5/SCDAPSIM. In this study, a forecasting model was supplemented to the existing diagnostic model to develop an LSTM-based real-time LOCA accident forecasting and diagnosis tool. The combined forecasting and diagnosis model has better capabilities and less real-time prediction error compared to the diagnostic model alone.

予稿パスワード認証
予稿集購入者向けのパスワード入力ボックスです。
参加者は、参加者用ログインからログインすると、予稿閲覧可能です。
ログインIDとパスワードは参加料決済後にメールで通知しています。

パスワード