*Ryusei Okaniwa1,2, Yuichiro Matsuzaki3,4, Tatsuma Yamaguchi1, Hideyuki Watanabe5, Norikazu Mizuochi6, Norio Tokuda7,8, Yuta Nakano7, Kensuke Kobayashi9,10, Kento Sasaki9, Junko Ishi-Hayase1,2
(1. School of Fundamental Sci. and Tech., Keio Univ. (Japan), 2. Center for Spintronics Res. Network, Keio Univ. (Japan), 3. Res. Center for Emerging Computing Tech., National Inst. of Advanced Indus. Sci. and Tech. (AIST) (Japan), 4. NEC-AIST Quantum Tech., Cooperative Res. Lab. National Inst. of Advanced Indus. Sci. and Tech. (AIST) (Japan), 5. Device Tech. Res. Inst., National Inst. of Advanced Indust. Sci. and Tech. (AIST) (Japan), 6. Inst. for Chemical Res., Kyoto Univ. (Japan), 7. Graduate School of Natural Sci. and Tech., Kanazawa Univ. (Japan), 8. Nanomaterials Res. Inst., Kanazawa Univ. (Japan), 9. Depertment of Physics, The Univ. of Tokyo (Japan), 10. Inst. for Physics of Intelligence, The Univ. of Tokyo (Japan))
[Presentation Style] Onsite
We investigate electronic spin triple-resonance of nitrogen-vacancy centers in diamond by measuring continuous-wave optically-detected magnetic resonance spectra under simultaneous applications of microwave and radio-frequency fields with different frequencies toward realizing frequency-tunable AC magnetic field sensor.