日本金属学会2022年秋期(第171回)講演大会

Presentation information

一般講演

11.Computational Science » Data Science

[G] Data Science

Wed. Sep 21, 2022 3:05 PM - 5:00 PM Rm. E (D24,2Flr. Build.D)

座長:北嶋 具教(物質・材料研究機構)、小山 敏幸(名古屋大学)

4:15 PM - 4:30 PM

[113] Deep learning TEM image segmentation for automated microstructural analysis of FePt-C recording media

*Nikita Kulesh1, Anton Bolyachkin1, Ippei Suzuki1, Yukiko Takahashi1, Hossein Sepehri-Amin1 (1. NIMS)

Keywords:machine learning、transmission electron microscopy、magnetic recording、convolutional neural networks、FePt

Pipeline for automatic processing of TEM images based on deep learning image segmentation was developed, applied to FePt-C samples, used for generating a dataset and building an optimization algorithm

Please log in with your participant account.
» Participant Log In