日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 H (地球人間圏科学) » H-SC 社会地球科学・社会都市システム

[H-SC24] 人間環境と災害リスク

2015年5月24日(日) 16:15 〜 18:00 101B (1F)

コンビーナ:*青木 賢人(金沢大学地域創造学類)、鈴木 康弘(名古屋大学)、小荒井 衛(国土交通大学校測量部)、須貝 俊彦(東京大学大学院新領域創成科学研究科自然環境学専攻)、宇根 寛(国土地理院)、中村 洋一(宇都宮大学教育学部地学教室)、松本 淳(首都大学東京大学院都市環境科学研究科地理環境科学専攻)、後藤 真太郎(立正大学地球環境科学部環境システム学科)、原 慶太郎(東京情報大学総合情報学部)、座長:青木 賢人(金沢大学地域創造学類)

17:42 〜 17:45

[HSC24-P05] A multi-disciplinary management of flood risk based on rainfall interpolation, impact database and hydrological modeling

ポスター講演3分口頭発表枠

*Florent RENARD1Lucille ALONSO1Pierre-marie CHAPON1 (1.University Jean Moulin Lyon 3, UMR 5600)

キーワード:flood risk, rainfall interpolation, database, modeling, Lyon, France

The Greater Lyon (1.3 million inhabitants 650 km 2), located in south-east France, is subjected to recurring floods, with numerous consequences. From the perspective of prevention and management of this risk, the local authorities, in partnership with multidisciplinary researchers, have developed since 1988 a database built by the field teams, which specifically identifies all floods (places, date, impacts, damage, etc.). At first, this historical database is compared to two other databases, the emergency services and the local newspaper ones, in georeferencing these events using a GIS. It turns out that the historical database is more complete and precise, but the contribution of the other two bases is not negligible, and a useful complement to the knowledge of impacts. Thanks to the dense rain measurement network (30 rain gauges), the flood information is then compared to the distribution of rainfall for each episode (interpolation by ordinary kriging, fig. 1). The results are satisfactory and validate the accuracy of the information contained in the database, but also the accuracy of rainfall measurements. Thereafter, the number of flood on the study area is confronted with rainfall characteristics (intensity, duration and height of precipitated water). It does not appear here clear relationship between the number of floods and rainfall characteristics, because of the diversity of land uses, its permeability and the the types of local sewer network and urban water management. Finally, floods observed in the database are compared spatially with a GIS to flooding from the sewer network modeling (using the software Canoe). A strong spatial similarity between floods observed in the field and simulated flood is found in the majority of cases, despite the limitations of each tools. These encouraging results confirm the accuracy of the database and the reliability of the simulation software, and offer many operational perspectives to better understand the flood and learn to cope with the flooding risk.