日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 B (地球生命科学) » B-GM 地下圏微生物学

[B-GM22] 地球惑星科学と微生物生態学の接点

2015年5月26日(火) 11:00 〜 11:45 105 (1F)

コンビーナ:*砂村 倫成(東京大学大学院理学系研究科地球惑星科学専攻)、高井 研(海洋研究開発機構極限環境生物圏研究センター)、木庭 啓介(東京農工大学大学院農学研究院)、濱村 奈津子(愛媛大学)、座長:布浦 拓郎(独立行政法人海洋研究開発機構海洋生命理工学研究開発センター)、砂村 倫成(東京大学大学院理学系研究科地球惑星科学専攻)

11:15 〜 11:30

[BGM22-08] アンチモン微生物変換と環境動態における影響

*濱村 奈津子1森 久美子2光延 聖3 (1.九州大学大学院理学研究院 生物科学部門、2.愛媛大学沿岸環境科学研究センター、3.静岡県立大学 薬食生命科学総合学府 環境科学専攻)

キーワード:アンチモン, ヒ素, アンチモン還元微生物, アンチモン酸化微生物, 土壌微生物群集

Antimony (Sb) is a naturally occurring toxic element and is considered to be a priority pollutant of interest by the USEPA. Although the concentrations of Sb in soils are generally low (<1 mg kg-1), elevated levels of Sb have been released via mining activities and other anthropogenic activities due to its increasing industrial use. Antimony is commonly associated with arsenic (As) in the environment and both elements have similar chemistry and toxicity. Increasing numbers of studies have focused on microbial roles in As transformations, while microbial-Sb interactions are still not well understood. To gain insight into microbial roles in the geochemical cycling of Sb, soils from an old stibnite (Sb2S3) mine tailing area (Ichinokawa mine, Ehime, Japan) were characterized geochemically and examined for the presence of Sb-transforming microbial populations. Total concentrations of Sb and As were higher in the surface soil (0-3 cm: 2280 and 1240 mg kg-1, respectively) and decreased with depth (9-12 cm: 330 and 133 mg kg-1). Bacterial community profiles, examined by cultivation-independent analysis using 16S rRNA gene-based denaturing gradient gel electrophoresis, did not show substantial differences through depth (0-12 cm). After the aerobic enrichment culturing with Sb(III) (100 μM), pure cultures of Pseudomonas- and Stenotrophomonas-related isolates with Sb(III) oxidation activities were obtained. Anaerobic enrichment cultures capable of reducing Sb(V) (2 mM) were also obtained, in which the precipitation of antimonite [Sb(III)] as antimony trioxide was observed. These results demonstrate that indigenous microorganisms associated with stibnite mine soils are capable of Sb redox transformations and contribute to the speciation and mobility of Sb in situ.