日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT06] Interaction and Coevolution of the Core and Mantle

2016年5月23日(月) 10:45 〜 12:15 304 (3F)

コンビーナ:*田中 聡(海洋研究開発機構 地球深部ダイナミクス研究分野)、土屋 卓久(愛媛大学地球深部ダイナミクス研究センター)、座長:太田 健二(東京工業大学大学院理工学研究科地球惑星科学専攻)、芳野 極(岡山大学地球物質科学研究センター)

11:30 〜 11:45

[SIT06-10] Lattice thermal conductivity of lower mantle minerals

*太田 健二1奥田 善之1八木 貴志2広瀬 敬3新名 良介3 (1.東京工業大学 大学院理工学研究科 地球惑星科学専攻、2.産業技術総合研究所 計測標準研究部門、3.東京工業大学 地球生命研究所)

キーワード:lower mantle , thermal conductivity, bridgmanite, ferropericlase

Heat in the Earth’s interior is transported dominantly by convection in the mantle and core, and by conduction at thermal boundary layers. The thermal conductivity of the bottom thermal boundary layer of the mantle determines the magnitude of heat flux from the core, and is intimately related to the formation of mantle plumes, the long-term thermal evolution of both mantle and core, and the driving force for generation of the geomagnetic field (Lay et al. 2008). Recent technical progress both in the experiment and the theoretical calculation enables us to reveal high-pressure and high-temperature behavior of lattice thermal conductivity of lower mantle minerals, MgSiO3 perovskite (birdgmanite) and MgO periclase. However, the effect of iron incorporation into these minerals on the lattice thermal conductivity is still controversial.
We measured the lattice component of thermal conductivities both of (Mg,Fe)(Si,Al)O3 bridgmanite and (Mg,Fe)O ferropericlase at the Earth’s lower mantle pressures and 300 K using a pulsed light heating thermoreflectance technique in a diamond anvil cell. We found that iron incorporation into bridgmanite shows minor effect on the thermal conductivity. On the other hand, the obtained conductivity of ferropericlase was considerably lower than that of MgO periclase. The estimated lattice thermal conductivity of bridgmanite-dominant lowermost mantle is comparable to conventionally assumed value of 10 W/m/K (Stacey, 1992). However, our results imply that local existence of (Mg,Fe)O ferropericlase in the lower mantle induce strong heterogeneity of thermal conductivity.

References
Lay, T. et al.: Nature Geosci. 1, 25-32 (2008).
Stacey, F.: Physics of the Earth, 3rd ed. (1992).