日本地球惑星科学連合2019年大会

講演情報

[J] 口頭発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS06] ミクロスケール気象の稠密観測・数値モデリングの新展開

2019年5月26日(日) 13:45 〜 15:15 301A (3F)

コンビーナ:伊藤 純至(東京大学大気海洋研究所)、荒木 健太郎(気象研究所)、古本 淳一(京都大学生存圏研究所)、東 邦昭(京都大学生存圏研究所・メトロウェザー株式会社)、座長:伊藤 純至(東京大学)、荒木 健太郎(気象研究所)

15:00 〜 15:15

[AAS06-06] 瞬時的な風速に適用可能な接地境界層モデルの深層学習による構築

*伊藤 純至1,2毛利 英明2 (1.東京大学大気海洋研究所、2.気象研究所)

キーワード:接地境界層、深層学習、地表面フラックス、モニン・オブコフ則、壁法則

parameterizations consider the Monin-Obukhov similarity law for diagnosing momentum transports between the lowest atmosphere and ground. This law was found in the relations between temporally averaged (typically periods of 10 minutes) wind speeds and momentum fluxes. We have suggested that it is inappropriate to apply the law for the parameterization in large eddy simulations in which turbulence fluctuation is involved in resolved wind speed at each grid point. However, we do not know a good alternative to the law.

In this study, we perform a preliminary attempt to apply the deep learning technique for the parameterization. Results of wind tunnel experiments are used for the date to be learned: the relationship between wind speeds and momentums fluxes in a short time scale (1 second, typically) was obtained in the condition with steady external winds and neutral stratification over ten hours.

Nine-tenth of the wind tunnel data for three kinds of different external wind speeds was inputted to the routine of the TensorFlow library. Then the validation is performed by the left of the data. The result shows that diagnoses of the momentum fluxes through the trained network show far better performances than those of the misused Monin-Obukhov law.

If the wind speed is inputted in training, the network overfits the other wind speed that has not been used for the training. It would be better to consider normalize wind speeds for the training to apply a wide range of wind speeds.