JpGU-AGU Joint Meeting 2020

講演情報

[J] ポスター発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS27] 地球流体力学:地球惑星現象への分野横断的アプローチ

コンビーナ:伊賀 啓太(東京大学大気海洋研究所)、吉田 茂生(九州大学大学院理学研究院地球惑星科学部門)、柳澤 孝寿(国立研究開発法人海洋研究開発機構 海域地震火山部門)、相木 秀則(名古屋大学)

[MIS27-P04] 東西磁場が印加された回転球面上の磁気流体浅水波の極域にトラップされたモード

*中島 涼輔1吉田 茂生2 (1.九州大学 大学院理学研究院、2.九州大学 大学院理学研究院 地球惑星科学部門)

キーワード:MHD浅水波、トロイダル磁場、極域にトラップされた波動、遅い磁気Rossby波、極域に局在化するキンク不安定性

Magnetohydrodynamic (MHD) shallow water linear waves are examined on a rotating sphere with a background toroidal magnetic field expressed as B=B0sinθ, where B0 is constant, θ is the colatitude and Φ is the azimuth. The MHD shallow water equations are often used in studying the dynamics of the solar tachocline (e.g. Gilman & Dikpati, 2002[1]; Márquez-Artavia et al., 2017[2]) and sometimes the outermost Earth's core (Márquez-Artavia et al., 2017[2]; Nakashima, Ph.D. thesis, 2020[3]) and exoplanetary atmosphere (e.g. Heng & Workman, 2014[4]). In this poster, we especially focus on the propagation mechanisms and the force balances of polar trapped waves and unstable modes (Márquez-Artavia et al., 2017[2]; Nakashima, Ph.D. thesis, 2020[3]).

Comprehensive searches for eigenmodes yield two polar trapped modes when the main magnetic field is weak (the Lehnert number α=VA/2ΩR2<0.5, where VA is the Alfvén wave velocity, Ω is the rotation rate and R is the sphere radius). One is the slow magnetic Rossby waves, which propagate eastward for zonal wave number m≧2 (Márquez-Artavia et al., 2017[2]). As the Lamb's parameter ε=4Ω2R2/gh→0 (where g is the gravity acceleration and h is the equivalent depth), these branches asymptotically approach the eigenvalues of two-dimensional slow magnetic Rossby waves. Another is newly discovered westward polar trapped modes (Nakashima, Ph.D. thesis, 2020[3]).

In the case when α>0.5 (the background field is strong), these novel westward modes merge with the westward-propagating fast magnetic Rossby waves. In addition, only when m=1, polar trapped unstable modes appear due to the interaction between these fast magnetic Rossby waves and westward-propagating slow magnetic Rossby waves. These growth modes are believed to be the polar kink (Tayler) instability (Márquez-Artavia et al., 2017[2]).

In order to easily understand the propagation mechanisms and the force balances of polar trapped modes, we investigate a cylindrical model around a pole with an artificial boundary condition. This model provides the approximate dispersion relations and eigenfunctions of polar trapped modes, and indicates that stable polar trapped modes are governed by magnetostrophic balance and that the metric magnetic tension force causes the difference between the slow magnetic Rossby waves and the novel westward modes. For m=1 and α>0.5, the balance between Coriolis and Lorentz forces is disrupted and the part of magnetic tension with which Coriolis force can not compete induces kink instability.

[ Reference ]
[1] Gilman, P. A., Dikpati, M. (2002) Astrophys. J., 576, 1031. doi: 10.1086/341799
[2] Márquez-Artavia, X., Jones, C. A., Tobias, S. M. (2017) Geophys. Astrophys. Fluid Dyn., 111, 282. doi: 10.1080/03091929.2017.1301937
[3] Nakashima, R. (2020) Ph.D. thesis, Kyushu University. http://dyna.geo.kyushu-u.ac.jp/HomePage/nakashima/pdf/doctoral_thesis.pdf
[4] Heng, K., Workman, J. (2014) Astrophys. J. Sup., 213, 27. doi: 10.1088/0067-0049/213/2/27