Japan Geoscience Union Meeting 2021

Presentation information

[E] Oral

A (Atmospheric and Hydrospheric Sciences ) » A-AS Atmospheric Sciences, Meteorology & Atmospheric Environment

[A-AS03] Advances in Tropical Cyclone Research: Past, Present, and Future

Thu. Jun 3, 2021 10:45 AM - 12:15 PM Ch.07 (Zoom Room 07)

convener:Sachie Kanada(Nagoya University), Akiyoshi Wada(Department of Typhoon and Severe Weather Research, Meteorological Research Institute), Yoshiaki Miyamoto(Faculty of Environment and Information Studies, Keio University), Kosuke Ito(University of the Ryukyus), Chairperson:Yoshiaki Miyamoto(Faculty of Environment and Information Studies, Keio University)

11:45 AM - 12:00 PM

[AAS03-11] Future Changes of a Slow-moving Intense Typhoon with Global Warming: A Case Study using a regional 1-km-mesh atmosphere–ocean coupled model

*Sachie Kanada1, Hidenori AIKI1, Kazuhisa Tsuboki1, Izuru Takayabu2 (1.Nagoya University, 2.MRI/JMA)

Keywords:ocean impact, Numerical simulation

Numerical experiments on Typhoon Trami (2018) using a regional 1-km-mesh three-dimensional atmosphere–ocean coupled model in current and pseudo-global warming (PGW) climates were conducted to investigate future changes of a slow-moving intense typhoon under the warming climate. Over the warmer sea in the PGW climate, the maximum near-surface wind speed rapidly increased around the large eye of the simulated Trami. The stronger winds in the PGW simulation versus the current simulation caused a 1.5-fold larger decrease of sea surface temperature (SST) in the storm core-region. In the PGW climate, near-surface air temperature increased by 3.1°C. A large SST decrease due to ocean upwelling caused downward heat fluxes from the atmosphere to the ocean. The magnitude of the SST decrease depended strongly on initial ocean conditions. Consideration of the SST decrease induced by an intense typhoon, and a slow-moving storm in particular, indicated that such a typhoon would not always become more intense under the warmer climate conditions. An atmosphere–ocean coupled model should facilitate making more reliable projections of typhoon intensities in a warming climate.