日本地球惑星科学連合2021年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS04] Machine Learning Techniques in Weather, Climate, Hydrology and Disease Predictions

2021年6月4日(金) 15:30 〜 17:00 Ch.10 (Zoom会場10)

コンビーナ:Jayanthi Venkata Ratnam(Application Laboratory, JAMSTEC)、Rajib Maity(Indian Institute of Technology Kharagpur)、Behera Swadhin(Climate Variation Predictability and Applicability Research Group, Application Laboratory, JAMSTEC, 3173-25 Showa-machi, Yokohama 236-0001)、土井 威志(JAMSTEC)、座長:Pascal Oettli(独立行政法人海洋研究開発機構)、Venkata Ratnam Jayanthi(Application Laboratory, JAMSTEC)、土井 威志(JAMSTEC)、Swadhin Behera(Climate Variation Predictability and Applicability Research Group, Application Laboratory, JAMSTEC, 3173-25 Showa-machi, Yokohama 236-0001)

15:30 〜 15:45

[AAS04-07] Climate predictability for societal applications including AI/ML

*Swadhin Behera1、Jayanthi Venkata Ratnam1、Manali Pal2、Rajib Maiti3、Takeshi Doi1 (1.Application Laboratory, VAiG, JAMSTEC, 3173-25 Showa-machi, Yokohama 236-0001、2.National Institute of Technology, Warangal, India、3.Indian Institute of Technology, Kharagpur, India)

キーワード:El Nino Modoki, Indian Ocean Dipole, AI/ML

The tropical Indo-Pacific domain is important for global climate and its predictability. The Indian Ocean variability is dominated by the Indian Ocean Dipole (IOD) and the Tropical Pacific Ocean has the El Niño/Southern Oscillation (ENSO) phenomenon as the dominant mode. In the recent decades a variant of the ENSO, the ENSO Modoki with warming (cooling) in the Central Pacific and cooing in the east and west tropical Pacific is found to be occurring more frequently. Coupled models like SINTEX-F has been predicting the ENSO Modokis and IOD quite well. Here an attempt is made to compare those predictabilities using predictions from an AI/ML based statistical approach.