Japan Geoscience Union Meeting 2021

Presentation information

[J] Oral

A (Atmospheric and Hydrospheric Sciences ) » A-AS Atmospheric Sciences, Meteorology & Atmospheric Environment

[A-AS07] Weather, Climate, and Environmental Science Studies using High-Performance Computing

Fri. Jun 4, 2021 10:45 AM - 12:15 PM Ch.07 (Zoom Room 07)

convener:Hisashi Yashiro(National Institute for Environmental Studies), Takuya Kawabata(Meteorological Research Institute), Tomoki Miyakawa(Atmosphere and Ocean Research Institute, The University of Tokyo), Koji Terasaki(RIKEN Center for Computational Science), Chairperson:Takuya Kawabata(Meteorological Research Institute)

10:45 AM - 11:00 AM

[AAS07-07] Early results of the evaluation of the JRA-3Q reanalysis

★Invited Papers

*Yayoi Harada1, Shinya Kobayashi2, Yuki Kosaka2, Jotaro Chiba2, Takayuki Tokuhiro2 (1.Meteorological Research Institute / Japan Meteorological Agency, 2.Office of Earth System Modeling / Numerical Prediction Division / Japan Meteorological Agency)

Keywords:Global long-term reanalysis, JRA-3Q, Evaluation

The Japan Meteorological Agency (JMA) is conducting the third Japanese global atmospheric reanalysis named Japanese Reanalysis for Three Quarters of a Century (JRA-3Q) using the JMA operational data assimilation system that has been upgraded and improved since the Japanese 55-year Reanalysis (JRA-55) was conducted. Main points of improvement in the specifications of the data assimilation system are as follows (specifications of the JRA-55 data assimilation system are shown in parentheses for comparison): Vertical levels are increased up to 100 (60) layers; The top level of the system is 0.01 (0.1) hPa; The inner model resolution for 4D-Var is also increased up to TL319 (T106); Various parameterization schemes have been improved and several new schemes have been implemented. In addition, we use observations newly rescued and digitized by the ERA-CLIM and other projects as well as newly reprocessed and improved satellite observations. As for GNSS radio occultation, bending angle is assimilated up to 60 km (refractivity up to 30 km).

The early results show that both overestimation of precipitation in the tropics and dry bias in the middle troposphere are diminished compared with those in JRA-55, and the representation of diabatic heating rate is also improved. In addition, biases of surface heat fluxes and radiation fluxes at the top of the atmosphere are also reduced.