日本地球惑星科学連合2021年大会

講演情報

[J] ポスター発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS07] スーパーコンピュータを用いた気象・気候・環境科学

2021年6月4日(金) 17:15 〜 18:30 Ch.07

コンビーナ:八代 尚(国立研究開発法人国立環境研究所)、川畑 拓矢(気象研究所)、宮川 知己(東京大学 大気海洋研究所)、寺崎 康児(理化学研究所計算科学研究センター)

17:15 〜 18:30

[AAS07-P01] 1000-member ensemble forecasts for extreme events: the 2019 typhoon Hagibis and the July 2020 Kyushu heavy rain

★Invited Papers

*Le Duc1、Takuya Kawabata2、Kazuo Saito1,2,3、Tsutao Oizumi1,2 (1.Japan Meteorological Business Support Center、2.Meteorological Research Institute、3.Atmosphere and Ocean Research Institute, University of Tokyo)

キーワード:data assimilation, 1000 ensemble members, vertical localization

Forecast performances of several extreme events have been revisited with the aim of improving the forecasts for these events. Our approach is to better quantify forecast uncertainties by running data assimilation systems with 1000 ensemble members. The two data assimilation methods to be used are the local ensemble transform Kalman filter (LETKF) and the hybrid variational-ensemble method (EnVAR). For LETKF, a large number of ensemble members also enables us to extract more information from observations. To save computational costs, vertical localization is removed. Verifications show that the resulting forecasts outperform the operational forecasts both in deterministic and probabilistic forecasts. We hypothesize that running data assimilation schemes with around 1000 ensemble members is more effective if vertical localization is removed at the same time.