日本地球惑星科学連合2021年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG36] 衛星による地球環境観測

2021年6月3日(木) 13:45 〜 15:15 Ch.08 (Zoom会場08)

コンビーナ:沖 理子(宇宙航空研究開発機構)、本多 嘉明(千葉大学環境リモートセンシング研究センター)、高薮 縁(東京大学 大気海洋研究所)、松永 恒雄(国立環境研究所地球環境研究センター/衛星観測センター)、座長:岡本 幸三(気象研究所)、三好 建正(理化学研究所)

14:45 〜 15:00

[ACG36-17] Ensemble-Based Data Assimilation of GPM DPR Reflectivity into the Nonhydrostatic Icosahedral Atmospheric Model NICAM

★Invited Papers

*小槻 峻司1,2、寺崎 康児2、佐藤 正樹3、三好 建正2 (1.千葉大学 環境リモートセンシング研究センター、2.理化学研究所 計算科学研究センター、3.東京大学 大気海洋研究所)

キーワード:降水、GPM DPR、データ同化、NICAM-LETKF、パラメータ推定

This study aims to improve the precipitation forecasts from numerical weather prediction models through effective assimilation of satellite-observed precipitation data. The assimilation of precipitation data is known to be difficult mainly due to highly non-Gaussian statistics of precipitation-related variables. We have been developing a global atmospheric data assimilation system NICAM-LETKF, which comprises the Nonhydrostatic ICosahedral Atmospheric Model (NICAM) and Local Ensemble Transform Kalman Filter (LETKF). Using the NICAM-LETKF system, Kotsuki et al. (2017, JGR) successfully improved the weather forecasts by assimilating the Japan Aerospace eXploration Agency (JAXA)’s Global Satellite Mapping of Precipitation (GSMaP) data into the NICAM at 112-km horizontal resolution. However, assimilating space-borne precipitation radar data remains to be a challenging issue.

This study pioneers to assimilate radar reflectivity measured by the Dual-frequency Precipitation Radar (DPR) onboard the Global Precipitation Measurement (GPM) core satellite into the NICAM. We conduct the NICAM-LETKF experiments at 28-km horizontal resolution with explicit cloud microphysics of a single-moment 6-class bulk microphysics scheme. To simulate GPM DPR reflectivity from NICAM model outputs, the Joint-Simulator (Hashino et al. 2013; JGR) is used. Our initial tests showed a better match with the observed reflectivity by assimilating GPM DPR reflectivity into NICAM forecasts. However, the results from a 1-month data assimilation cycle experiment showed general degradation by assimilating GPM DPR reflectivity. For better use of GPM DPR reflectivity data, we estimated a model cloud physics parameter corresponding to snowfall terminal velocity by data assimilation. Parameter estimation reduced the snowfall terminal velocity, and successfully mitigated the gap between simulated and observed Contoured Frequency by Altitude Diagram (CFAD). The estimated parameter also improved temperature and humidity fields in the mid- to lower troposphere, and precipitation forecasts.