日本地球惑星科学連合2021年大会

講演情報

[J] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG37] 陸域生態系の物質循環

2021年6月5日(土) 13:45 〜 15:15 Ch.08 (Zoom会場08)

コンビーナ:加藤 知道(北海道大学農学研究院)、市井 和仁(千葉大学)、伊勢 武史(京都大学フィールド科学教育研究センター)、寺本 宗正(鳥取大学乾燥地研究センター)

14:45 〜 15:00

[ACG37-05] Intercomparison of Data-Driven Estimation of Soil Respiration in Japan

*山貫 緋称1、市井 和仁1,2、梁 乃申2、寺本 宗正3、高橋 善幸2、曾 継業2、高木 健太郎4、平野 高司4、石田 祐宣5、高木 正博6、楢本 正明7、中根 周歩8、近藤 俊明9、小嵐 淳10、安藤 麻里子10 (1.千葉大学環境リモートセンシング研究センター、2.国立環境研究所地球環境研究センター、3.鳥取大学乾燥地研究センター、4.北海道大学、5.弘前大学、6.宮崎大学、7.静岡大学、8.広島大学、9.国際農林水産業研究センター、10.日本原子力研究開発機構)


キーワード:炭素循環、土壌呼吸、リモートセンシング、機械学習、広域推定、二酸化炭素フラックス

Soil Respiration (SR), the sum of root respiration and heterotrophic respiration, is one of the most essential components of soil carbon cycles. However, large uncertainties remain in its temporal and spatial variations. So far, various efforts have been conducted to understand SRs. Many observation stations directly measure SR using chambers. Using these observation data and literature survey, several studies estimated spatial and temporal patterns of SR at global and regional scales based on semi-empirical equations and machine-learning methods. However, the database (e.g. Soil Respiration Database; SRDB) used in these large-scale studies contains inconsistently observed datasets. These inconsistencies may produce additional uncertainties in estimated fluxes. The largest SR observation network across Asia developed and maintained by NIES, Japan can be a good candidate to estimate spatio-temporal variations in SR across Asia, since these observations have been conducted with a consistent observation protocol and quality controls.

In this study, we updated our data-driven estimation of SR across Japan with observation data (eight sites across Japan), remote sensing data (MODIS land products), and random forest regression. Our estimation shows a reasonable performance with R2=0.87 for remote sensing only model and R2=0.91 for remote sensing and in-situ combined model. Based on the established model, we also produced upscaled estimations of SR across Japan with 1km spatial resolution from 2000 to 2020.

Intercomparison of our estimation with other available datasets was also conducted to understand advantages of our estimation. Our results show spatially more explicit variations compared with other global products. In addition, our advantage is to capture temporal variations (e.g. 8days). We also confirmed that previous estimations do not reproduce our observation network datasets, indicating consistent observation approach is important to upscale soil respiration.