Japan Geoscience Union Meeting 2021

Presentation information

[E] Oral

A (Atmospheric and Hydrospheric Sciences ) » A-OS Ocean Sciences & Ocean Environment

[A-OS10] Continental Oceanic Mutual Interaction - Planetary Scale Material Circulationn

Thu. Jun 3, 2021 10:45 AM - 12:15 PM Ch.11 (Zoom Room 11)

convener:Alexandre Yosuke Yamashiki(Earth & Planetary Water Resources Assessment Laboratory Graduate School of Advanced Integrated Studies in Human Survivability Kyoto University), Yukio Masumoto(Graduate School of Science, The University of Tokyo), Takanori Sasaki(Department of Astronomy, Kyoto University), Swadhin Behera(Application Laboratory, JAMSTEC, 3173-25 Showa-machi, Yokohama 236-0001), Chairperson:Yosuke Alexandre Yamashiki(Earth & Planetary Water Resources Assessment Laboratory Graduate School of Advanced Integrated Studies in Human Survivability Kyoto University), Takanori Sasaki(Department of Astronomy, Kyoto University)

11:45 AM - 12:00 PM

[AOS10-11] Relationship between three-dimensional velocity of filament eruptions and CME association

*Daikichi SEKI1,3, Kenichi Otsuji2, Takako T. Ishii3, Ayumi Asai3, Kiyoshi Ichimoto3 (1.Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, 2.National Institute of Information and Communications Technology, 3.Astronomical Observatory, Kyoto University)

Keywords:Coronal Mass Ejection, Solar filaments, Space weather prediction, Filament eruption, Halpha observation

It is widely recognised that filament disappearances or eruptions are frequently associated with Coronal Mass Ejections (CMEs). Since CMEs are a major source of disturbances of the space environment surrounding the Earth, it is important to investigate these associations in detail for the better prediction of CME occurrence. However, the proportion of filament disappearances associated with CMEs is under debate. The estimates range from ∼10% to ∼90% and could be affected by the manners to select the events.

In this study, we aim to reveal what parameters control the association between filament eruptions and CMEs. We analysed the relationships between CME associations and the physical parameters of filaments including their length, maximum ascending velocity, and direction of eruptions using 28 events of filament eruptions observed in Hα. We found that the product of the maximum radial velocity and the filament length is well correlated with the CME occurrence. If the product is larger than 8.0×106 km2 s−1, the filament will become a CME with a probability of 93%, and if the product is smaller than this value, it will not become a CME with a probability of 100%. We suggest a kinetic-energy threshold above which filament eruptions are associated with CMEs. Our findings also suggest the importance of measuring the velocity vector of filament eruption in three-dimensional space for the better prediction of CME occurrence.