日本地球惑星科学連合2021年大会

講演情報

[E] 口頭発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI29] Data assimilation: A fundamental approach in geosciences

2021年6月3日(木) 10:45 〜 12:15 Ch.09 (Zoom会場09)

コンビーナ:中野 慎也(情報・システム研究機構 統計数理研究所)、藤井 陽介(気象庁気象研究所)、三好 建正(理化学研究所)、宮崎 真一(京都大学理学研究科)、座長:藤井 陽介(気象庁気象研究所)、三好 建正(理化学研究所)

11:30 〜 11:45

[MGI29-10] An iterative ensemble-based variational method with ensemble generation in random subspaces

*中野 慎也1,2 (1.情報・システム研究機構 統計数理研究所、2.情報・システム研究機構 データサイエンス共同利用基盤施設 データ同化研究支援センター)

キーワード:アンサンブル変分法、データ同化

The ensemble-based method for variational data assimilation problems, referred to as the 4-dimensional ensemble variational method (4DEnVar), is a useful tool for data assimilation problems. Although the 4DEnVar is originally based on a linear approximation, highly uncertain problems, where system nonlinearity is significant, can be solved by an iterative algorithm which minimizes a quadratic function at each iteration. This iterative method can be regarded as an approximation of the Gauss-Newton method for solving 4-dimensional variational problems. Since ensemble-based methods basically seek the solution within a lower-dimensional subspace spanned by the ensemble members, it appears that the solution of this iterative method is confined within the subspace. However, the conditions for monotonic convergence to a local maximum of the objective function can be satisfied even if the ensemble is distributed in different subspace at each iteration. This study demonstrates that the iterative ensemble-based algorithm can solve high-dimensional problems if it is allowed that the ensemble can be generated in different subspace at each iteration.