Japan Geoscience Union Meeting 2021

Presentation information

[E] Oral

M (Multidisciplinary and Interdisciplinary) » M-IS Intersection

[M-IS05] Global climate change driven by the Southern Ocean and the Antarctic Ice Sheet

Sun. Jun 6, 2021 1:45 PM - 3:15 PM Ch.11 (Zoom Room 11)

convener:Osamu Seki(Institute of Low Temperature Science, Hokkaido University), Yoshifumi Nogi(National Institute of Polar Research), Akira Oka(Atmosphere and Ocean Research Institute, The University of Tokyo), Yusuke Suganuma(National institute of Polar Research), Chairperson:Hiroki Matsui(Graduate School of International Resource Sciences, Akita University), Takeshige Ishiwa(National Institute of Polar Research)

2:45 PM - 3:00 PM

[MIS05-10] Antarctic warmth in the last interglacial driven by Northern insolation and deglaciation

*Takashi Obase1, Ayako Abe-Ouchi1,2, Fuyuki SAITO3 (1.Atmosphere and Ocean Research Institute, the University of Tokyo, 2.National Institute of Polar Research, Japan, 3.Japan Agency for Marine-Earth Science and Technology)

The global mean sea level in the last interglacial (LIG, about 130,000 to 115,000 years before present) was very likely higher than the present level, driven mainly by mass loss of the Antarctic ice sheet. Some studies have suggested that this mass loss may have been caused by the warmer temperature over the Southern Ocean in the LIG compared with the present interglacial. However, the ultimate cause of the difference in Antarctic warming between the last and current interglacials has not been explained. Here, based on transient simulations of the last deglaciation using a fully coupled ocean–atmosphere model, we show that greater meltwater (by a factor of 1.5 relative to the last deglaciation) during the middle and later stages of the deglaciation could have produced the difference in Antarctic warmth. Northern Hemisphere ice sheet model experiments suggest that the difference in meltwater was caused by slightly smaller orbital eccentricity in our current interglacial than in the LIG, indicating that mass loss of the Antarctic ice sheet is influenced by the preceding northern summer insolation and disintegration of Northern Hemisphere ice sheets.