日本地球惑星科学連合2021年大会

講演情報

[J] 口頭発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS14] 水惑星学

2021年6月5日(土) 10:45 〜 12:15 Ch.02 (Zoom会場02)

コンビーナ:関根 康人(東京工業大学地球生命研究所)、渋谷 岳造(海洋研究開発機構)、玄田 英典(東京工業大学 地球生命研究所)、福士 圭介(金沢大学環日本海域環境研究センター)、座長:渋谷 岳造(海洋研究開発機構)、関根 康人(東京工業大学地球生命研究所)、福士 圭介(金沢大学環日本海域環境研究センター)、臼井 寛裕(東京工業大学地球生命研究所)、玄田 英典(東京工業大学 地球生命研究所)

11:00 〜 11:15

[MIS14-02] Field investigations on salt partitioning in frozen closed-basin lakes in Mongolia as
terrestrial analogues of subsurface brine reservoirs on Solar System icy bodies

*依田 優大1,2、関根 康人2,3、福士 圭介3、北島 卓磨4、Gankhurel Baasansuren4、Davaasuren Davaadorj 5、Gerelmaa Tuvshin5、Ganbat Shuukhaaz4、庄司 大悟6、高橋 嘉夫1 (1.東京大学 理学系研究科地球惑星科学専攻、2.東京工業大学 地球生命研究所、3.金沢大学 環日本海域環境研究センター、4.金沢大学 自然科学研究科、5.モンゴル国立大学 地理学科、6.宇宙航空研究開発機構宇宙科学研究所)

キーワード:氷天体内部の塩水の凍結、凍結塩湖の水質、結氷時の鉱物形成

Geologically-active icy bodies, e.g., Europa and Ceres, would have possessed near-
surface brine reservoirs, which may be a source of salts on the surfaces (e.g., Europa’s
chaos terrains and Ceres’ bright spots). Previous studies hypothesized a few processes,
in which an overlying ice layer can capture salinity from a subsurface brine reservoir;
however, few field investigations have been conducted for inferring the salt partitioning
between ice layers and subsurface reservoirs on the icy bodies.
Here, we report results of field surveys to ice-covered, closed-basin saline lakes of
Orog and Olgoy lakes in Mongolia in February 2019 and January 2020. The surface ice
exhibited complex geomorphology with pressurized ridges formed by compressive
force and wet cracks formed by extensional force. We collected the ice samples,
including both of the contraction and wet cracks, as well as underlying lake water
samples at the lakes. The salinity of ices collected from field surveys suggest that wet
cracks could provide salinity to the ice layer and surface. In addition, concentrated
bottom lake water, together with suspended authigenic carbonates, would be captured
within the ice layer during freezing. We evaluate both of the salts partitioning and lake
water chemistry in the frozen lakes using a coupled model of mass balance and low-
temperature aqueous chemistry. Our model results can reproduce both the salinity in ice
and major dissolved species, e.g., Na+, Cl-, and SO42-, in the bottom lake water. To explain
the Mg2+ and Ca2+ concentrations of in the bottom lake water metastable carbonates of
amorphous magnesium carbonate and monohydrocalcite should be taken into account.
We discuss the implications of the salts partitioning and water chemistry to subsurface
liquid reservoirs of the icy bodies.