日本地球惑星科学連合2021年大会

講演情報

[J] 口頭発表

セッション記号 P (宇宙惑星科学) » P-CG 宇宙惑星科学複合領域・一般

[P-CG18] 惑星大気圏・電磁圏

2021年6月3日(木) 09:00 〜 10:30 Ch.04 (Zoom会場04)

コンビーナ:関 華奈子(東京大学大学院理学系研究科)、前澤 裕之(大阪府立大学大学院理学系研究科物理科学科)、今村 剛(東京大学大学院 新領域創成科学研究科)、寺田 直樹(東北大学大学院理学研究科)、座長:木村 智樹(東京理科大学)、前澤 裕之(大阪府立大学大学院理学系研究科物理科学科)、関 華奈子(東京大学大学院理学系研究科)

10:00 〜 10:15

[PCG18-05] Ion escape mechanism from a Mars-like planet under weak intrinsic magnetic field conditions: Dependence of IMF clock angle

*堺 正太朗1,2、関 華奈子3、寺田 直樹1、品川 裕之4、坂田 遼弥3、田中 高史4,5、海老原 祐輔6 (1.東北大学大学院理学研究科地球物理学専攻、2.東北大学大学院理学研究科惑星プラズマ・大気研究センター、3.東京大学大学院理学系研究科地球惑星科学専攻、4.情報通信研究機構、5.九州大学国際宇宙天気科学・教育センター、6.京都大学生存圏研究所)

キーワード:火星、大気流出、固有磁場、惑星間空間磁場、数値計算

The ion escape mechanism from planets is mainly determined by the presence of an intrinsic magnetic field, the orientation of the interplanetary magnetic field (IMF), and the solar X ray and extreme ultraviolet (XUV) irradiances. It is believed that ancient Mars had a global intrinsic magnetic field of interior origin and the magnetic field decayed by ~3.9 billion years ago (Acuña et al., 1999). One of the pieces of evidence that ancient Mars had an intrinsic field is the existence of a "crustal magnetic field” (Acuña et al., 1999). Sakai et al. (2018) investigated the effect of a weak intrinsic magnetic field at the Martian equatorial surface on the escape mechanism. It was shown that the existence of the weak field results in an enhancement of the ion escape rate. A parker-spiral IMF was however used in order to obtain the escape rate in this earlier study. The orientation of IMF also changes the escape rate and mechanism. Sakai et al. (2021) suggested that the escape rate is the lowest in the case of IMF parallel to the dipole at subsolar and comparable in the Parker-spiral and antiparallel IMF case. The parallel IMF case is dominated by the ion escape from the high-latitude lobe reconnection region, where ionospheric ions are transported upward along open field lines, while in the antiparallel IMF case, the escape flux of heavy ions increases significantly due to the mass loading of ionospheric ions, with peaks around the equatorial dawn and dusk flanks. Previous studies have investigated the ion escape rate and its mechanism for only three IMF orientations, e.g., the northward (parallel), Parker-spiral, and southward (antiparallel) IMF cases, but the factors responsible for the enhancement of escape rate have not yet been elucidated.

This paper investigates the dependence of the escape mechanism on the IMF clock angle under a weak intrinsic magnetic field of 100 nT at the surface and the present-day XUV irradiances using a multispecies magnetohydrodynamic simulation. The simulation is conducted under the condition that the IMF makes a round in twenty-four hours, which is comparable to the time scale of coronal mass ejection, after starting the northward IMF. The ion escape rate drastically increases when the clock angle is above 45o from the due north. The reconnections occur in the lobe region of the magnetosphere in the northward IMF, its location gradually moving to the flank region during the transition of the clock angle to 45o. The reconnections in the flank region also occur in the Parker-spiral IMF case (Sakai et al., 2018; 2021), leading to the enhancement of the ion escape rate. The escape rate gradually increases over time after the clock angle of 60o, reaching a maximum around the clock angle of 180o - 210o in the southward IMF.

This paper also studies the escape mechanism under the different magnetic field strengths and XUV irradiances influencing the escape mechanism, and the results are compared with those under the magnetic field strength of 100 nT and the present-day XUV irradiances.

References:
Acuña, M., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., et al. (1999). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment, Science, 284, 790-793. https://doi.org/10.1126/science.284.5415.790
Sakai, S., Seki, K., Terada, N., Shinagawa, H., Tanaka, T., & Ebihara, Y. (2018). Effects of a weak intrinsic magnetic field on atmospheric escape from Mars. Geophys. Res. Lett., 45, 9336-9343. https://doi.org/10.1029/2018GL079972
Sakai, S., Seki, K., Terada, N., Shinagawa, H., Sakata, R., Tanaka, T., & Ebihara, Y. (2021). Effects of the IMF direction on atmospheric escape from a Mars-like planet under weak intrinsic magnetic field conditions. J. Geophys. Res. Space Physics, in revision.