日本地球惑星科学連合2021年大会

講演情報

[E] ポスター発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM08] 宇宙天気・宇宙気候

2021年6月5日(土) 17:15 〜 18:30 Ch.03

コンビーナ:片岡 龍峰(国立極地研究所)、A Antti Pulkkinen(NASA Goddard Space Flight Center)、草野 完也(名古屋大学宇宙地球環境研究所)、坂口 歌織(情報通信研究機構)

17:15 〜 18:30

[PEM08-P12] Forecast of energetic electron flux variations of the outer belt using the machine learning

*福岡 智司1、三好 由純1、塩田 大幸2、齊藤 慎司4、三谷 烈史3、堀 智昭1、東尾 奈々3、今城 峻1、篠原 育3 (1.名古屋大学宇宙地球環境研究所、2.国立研究開発法人 情報通信研究機構、3.宇宙航空研究開発機構宇宙科学研究所、4.情報通信研究機構)

キーワード:放射線帯変動の予測

The relativistic/sub-relativistic electron flux variations of the outer radiation belt often cause serious damage on the satellite operations through the dielectric charging. In order to forecast flux variations of these electrons, various forecast methods based on the physics-based simulation and empirical modeling have been developed. For the physics-based simulation, we have operated the SUSANOO system that is simulating a code-coupling simulation of heliosphere and radiation belt provides MeV electron flux variations for the next couple of days. For the empirical modeling, the linear prediction filter and the auto-regressive moving average are popular methods, which have been used for the forecast of MeV electrons. Recently, the machine learning techniques have widely been used for the space weather forecast, for example, ionospheric variations, the flare prediction, etc. In this study, we have developed the forecast system of relativistic/sub-relativistic electron flux variations based on long short-term memory recurrent neural network (LSTM-RNN). As the training data, we use the solar wind data and energetic electron data observed by Arase/HEP, XEP instruments at different L-shells of the outer belt. Our developed network provides time variations of the energetic electron flux around L=4,5,6 using the solar wind data as an input parameter. In this presentation, we will report the forecast performance, focusing on how forecast skills depend on the lead-time and energy ranges.