日本地球惑星科学連合2021年大会

講演情報

[E] ポスター発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM11] Coupling Processes in the Atmosphere-Ionosphere System

2021年6月4日(金) 17:15 〜 18:30 Ch.04

コンビーナ:Liu Huixin(九州大学理学研究院地球惑星科学専攻 九州大学宙空環境研究センター)、Chang Loren(Institute of Space Science, National Central University)、大塚 雄一(名古屋大学宇宙地球環境研究所)、Yue Deng(University of Texas at Arlington)

17:15 〜 18:30

[PEM11-P21] 南極昭和基地で共鳴散乱ライダー観測されたカルシウムイオンの薄層

*江尻 省1,2、西山 尚典1,2、津田 卓雄3、津野 克彦4、堤 雅基1,2、阿保 真5、川原 琢也6、小川 貴代4、和田 智之4、中村 卓司1,2 (1.国立極地研究所、2.総合研究大学院大学、3.電気通信大学、4.理化学研究所光量子工学研究領域、5.東京都立大学、6.信州大学)

キーワード:中間圏カルシウムイオン層、ライダー観測、南極、薄層

Layers of metal ions in the mesosphere and lower-thermosphere (MLT) are produced by meteoric ablation. The meteoric metal ions have relatively long chemical lifetime in the MLT region and behave as plasma affected by neutral atmosphere dynamics. In the mid-latitude, the meteoric metal ions in the MLT region are generally accepted as key species for generation of sporadic E (Es) layer in the wind shear theory. The close link between the Es layer and calcium ion (Ca+), one of meteoric metal ions, layer has been also clearly shown by radar and lidar observations [Raizada et al., 2012; Ejiri et al., 2019]. On the other hand, ion convergence at high latitude by the wind shear theory is expected less efficient than mid latitude because of large inclination angle of magnetic field line [e.g., Shinagawa et al., 2017]. A resonance scattering lidar developed by the National Institute of Polar Research (NIPR) was installed at Syowa (69S, 40E), Antarctic in 2017 and obtained Ca+ density profiles 6 nights in total in Spring in 2017 and 2018. Ca+ thin layers with high densities were observed on October 6 - 7 in 2018. That night was quiet of the geomagnetic activity (Kp = 0), therefore, effects of electric field to generation of the Ca+ thin and dense layer were probably negligible. Vertical Ca+ velocity induced by the neutral wind can be calculated using background wind measured by MF radar at Syowa. A comparison in temporal variation between Ca+ density and gradient of vertical Ca+ velocity profiles shows that the Ca+ thin and dense layer was located at the altitude that the gradient was 0 ms-1km-1. We will discuss a possible generation process of the observed Ca+ thin and dense layer.