日本地球惑星科学連合2021年大会

講演情報

[J] 口頭発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG52] 機械学習による固体地球科学の牽引

2021年6月3日(木) 09:00 〜 10:30 Ch.18 (Zoom会場18)

コンビーナ:久保 久彦(国立研究開発法人防災科学技術研究所)、小寺 祐貴(気象庁気象研究所)、直井 誠(京都大学)、矢野 恵佑(統計数理研究所)、座長:小寺 祐貴(気象庁気象研究所)

10:00 〜 10:15

[SCG52-05] 地震動予測式のサイト汎化性能:単調ニューラル・ネットワークの適用

*岡崎 智久1、森川 信之2、藤原 広行2、上田 修功1 (1.理化学研究所革新知能統合研究センター、2.防災科学技術研究所)

Ground motion models (GMM) provide empirical relationships between earthquake parameters and ground-motion intensities. In addition to regression models developed over the past 50 years, machine learning (ML) methods recently came into use. ML models can obtain input-output relationships without assumptions, but are in danger of overfitting owing to their flexibility. To evaluate the predictive power (generalization performance) of ML GMMs, observational records are customary divided into training and test datasets based on records or earthquakes.

In this presentation, however, we demonstrate that the above division of dataset does not work for monitoring overfitting to recorded site when a model includes site-condition proxies (SCP) as input variables; complex deep neural network (DNN) models with many SCPs apparently exhibit good predictive power at trained sites but show serious overfitting at new sites. Therefore, it is crucial to divide dataset based on recorded site for correctly evaluating site generalization performance. As a possible solution to maintain generalization performance in DNN models, we propose to impose monotonic dependence on input variables. An experimental application supports the effectiveness of this simple approach.