日本地球惑星科学連合2021年大会

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT15] 地球深部科学 - 核・マントルの相互作用と共進化

2021年6月4日(金) 10:45 〜 12:15 Ch.24 (Zoom会場24)

コンビーナ:河合 研志(東京大学大学院理学系研究科地球惑星科学専攻)、飯塚 毅(東京大学)、太田 健二(東京工業大学理学院地球惑星科学系)、土屋 卓久(愛媛大学地球深部ダイナミクス研究センター)、座長:河合 研志(東京大学大学院理学系研究科地球惑星科学専攻)、太田 健二(東京工業大学理学院地球惑星科学系)、飯塚 毅(東京大学)、土屋 卓久(愛媛大学地球深部ダイナミクス研究センター)

11:00 〜 11:15

[SIT15-02] 下部マントル条件下での鉄の取り込みによるフェロペリクレース及びブリッジマナイトの窒素溶解度の増加

★招待講演

*福山 鴻1,2、鍵 裕之2、井上 徹3、柿澤 翔3、新名 亨1、佐野 有司4,5、高畑 直人4、菱田 俊一6、Deligny Cécile7、Füri Evelyn7 (1.愛媛大学地球深部ダイナミクス研究センター、2.東京大学大学院理学系研究科附属地殻化学実験施設、3.広島大学大学院先進理⼯系科学研究科、4.東京大学大気海洋研究所、5.天津大学表層地球系統科学研究院、6.国立研究開発法人物質・材料研究機構、7.Centre de Recherches Pétrographiques et Géochimiques, Université de Lorraine)

キーワード:下部マントル、枯渇した窒素、高温高圧実験、二次イオン質量分析法、大気ーマントル共進化

Nitrogen occupies approximately 78% of the Earth's atmosphere and is one of the essential elements of life. Despite its importance, nitrogen behavior in the Earth's interior remains poorly understood. When the mass of volatile elements in the bulk silicate Earth is normalized to the chondrite composition, nitrogen in the bulk Earth is depleted compared to other volatile elements (Marty et al., 2012). Experimental studies suggested that this "missing" nitrogen was caused by nitrogen stored in the deep mantle through the solidification of the magma ocean (e.g., Li et al., 2013; Yoshioka et al., 2018). Yoshioka et al. (2018) are the only authors reporting the nitrogen solubility in bridgmanite, which occupies approximately 80 vol% of the lower mantle. Nitrogen solubility in ferropericlase, which occupies approximately 15 vol% of the lower mantle, has not been investigated.

In this research, we investigated the effect of iron incorporation on nitrogen solubility in periclase (MgO) and bridgmanite. High-pressure and high-temperature experiments were conducted using the multi-anvil apparatus installed at Geodynamics Research Center, Ehime University. The experimental pressure and temperatures were 28 GPa and 1400–1700 °C. Fe-FeO buffer was used to control the redox state corresponding to the lower-mantle condition. Nitrogen in recovered samples were analyzed using the NanoSIMS installed at Atmosphere and Ocean Research Institute, The University of Tokyo and the high-resolution secondary ion mass spectrometer (1280 HR2, CAMECA) installed at Centre de Recherches Pétrographiques et Géochimiques. Nitrogen-implanted standard samples for the NanoSIMS were prepared at National Institute for Materials Science.

Our results showed that the nitrogen solubility in periclase (MgO) increased from 1.1 ppm to 132 ppm with increasing FeO content and the nitrogen solubility in bridgmanite increased from 5 ppm to 14 ppm with increasing FeO content. These results implied that, assuming no pressure dependence on nitrogen solubility in minerals, bridgmanite ((Mg0.9, Fe0.1)SiO3; nitrogen solubility of 8.7 ppm) and ferropericlase ((Mg0.9, Fe0.1)O; nitrogen solubility of 132 ppm) can store 5.2 PAN and 15.7 PAN (PAN: Mass of Present Atmospheric Nitrogen, 3.92 × 1018 kg (e.g., Johnson and Goldblatt, 2015)) in the lower mantle, respectively. We suggest that the lower mantle can be the largest nitrogen reservoir in the bulk silicate Earth.