日本地球惑星科学連合2021年大会

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT16] Structure and Dynamics of Earth and Planetary Mantles

2021年6月4日(金) 15:30 〜 16:45 Ch.24 (Zoom会場24)

コンビーナ:中川 貴司(University of Leeds)、芳野 極(岡山大学惑星物質研究所)、趙 大鵬(東北大学大学院理学研究科附属地震・噴火予知研究観測センター)、座長:芳野 極(岡山大学惑星物質研究所)

16:30 〜 16:45

[SIT16-10] 第一原理計算によるMg2GeO4の秩序無秩序相転移予言

*梅本 幸一郎1,2、Wentzcovitch Renata3 (1.東京工業大学地球生命研究所、2.理化学研究所、3.コロンビア大学)

キーワード:高温高圧相転移、地球型系外惑星、第一原理計算

Here we present an first-principles prediction of a temperature-induced order-disorder transition (ODT) from I-42d-type to Th3P4-type phase in I-42d-type Mg2GeO4. This uncommon type of prediction is achieved by carrying out a high-throughput sampling of atomic configurations in a 56-atom supercell followed by a Boltzmann ensemble statistics calculation. Mg2GeO4 is a low-pressure analog [1] of ultrahigh pressure I-42d-type Mg2SiO4 [2]. The latter was predicted to occur as a product of dissociation/recombination transitions in MgSiO3 post-perovskite at multi-Mbar pressures (post-PPV transitions) [3]. In the Mg-Ge-O system, this post-PPV phase occurs beyond ~150 GPa [1]. The new ODT predicted here alters the sequence of post-PPV phases in Mg2GeO4 at high temperatures (>~2,000 K) and likely also in Mg2SiO4. I-42d-type Mg2SiO4 is predicted to occur in the deep interiors of super-Earths [2-5]. Therefore, this newly found ODT should be relevant for modeling the internal dynamics and structure of super-Earth-type planets. The prediction of this Th3P4-type phase in Mg2GeO4 enhances further the relationship between the crystal structures of Earth/planet-forming silicates and oxides at extreme pressures and those of rare-earth sesquisulfides at low pressures.

References:
[1] K. Umemoto and R. M. Wentzcovitch, Phys. Rev. Materials 3, 123601 (2019).
[2] S. Q. Wu et al., J. Phys.: Condens. Matter, 26, 035402 (2014).
[3] K. Umemoto et al., Earth Planet. Sci. Lett. 478, 40-45 (2017).
[4] H. Niu et al., Scientific Reports 5, 18347 (2015).
[5] A. van den Berg, et al. Icarus 317, 412-426 (2019).