日本地球惑星科学連合2021年大会

講演情報

[J] ポスター発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT21] 固体地球科学と材料科学の融合が切り拓く新展開

2021年6月3日(木) 17:15 〜 18:30 Ch.12

コンビーナ:河合 研志(東京大学大学院理学系研究科地球惑星科学専攻)、土屋 旬(愛媛大学地球深部ダイナミクス研究センター)、野村 龍一(京都大学)、大村 訓史(広島工業大学)

17:15 〜 18:30

[SIT21-P02] Waveform inversion for localized 3-D transversely isotropic structure in the lowermost mantle beneath the western Pacific using Thai Seismic Array (TSAR) data

*鈴木 裕輝1、河合 研志2、ゲラー ロバート2、田中 聡3、Siripunvaraporn Weerachai4、Boonchaisuku Songkhun 4、Sutthipong Noisagool 4、石原 靖3、Kim Taweoon3 (1.東京工業大学 理学院 地球惑星科学系、2.東京大学 大学院理学系研究科 地球惑星科学専攻、3.海洋研究開発機構、4.マヒドン大学 理学部)

キーワード:マントル最深部、異方性、波形インバージョン、太平洋LLSVP、プルームクラスター、D"領域

Previous tomographic studies found a large-scale low S-velocity province (LLSVP) in the lowermost mantle beneath the Pacific. However, due to a lack of resolution it remained unclear whether the LLSVP consists of clusters of small-scale low-velocity anomalies or large-scale anomalies. In a previous study (Suzuki et al., PEPI, 2020) we inverted a new dataset from the Thai Seismic Array (TSAR; Tanaka et al., BERI, 2019) to infer the isotropic 3-D S-velocity structure beneath the western Pacific. We found a high-velocity anomaly extending vertically to 400 km above the core-mantle boundary (CMB) beneath the Philippine Sea and small-scale low-velocity patches with a diameter of ~300 km at the CMB beneath New Guinea. We hypothesized that a vertically continuous high-velocity anomaly could be the sinking Izanagi paleoslab, which subducted ~200 Ma, and interpreted small-scale low-velocity anomalies as a plume cluster that forms at the western margin of the Pacific LLSVP.
To obtain further geodynamical information, in this study we conduct waveform inversion for transversely isotropic structure. We infer high-resolution 3-D models of the S-velocity perturbation δVs and the anisotropy parameter δξ in the lowermost 400 km of the mantle. The inferred anisotropic structure is due to the deformation-induced alignment of the crystal caused by mantle flow for either Mg-perovskite, Mg-post-perovskite, ferropericlase, or a combination thereof because of the high-stress condition in the boundary layer of the mantle convection. When we assume the dominant glide system of each mineral under the lowermost mantle conditions given by previous experimental results, the inferred anisotropic structure shows that vertical flow (upwelling plumes and downwelling of paleoslabs) is dominant in the lowermost mantle beneath the western Pacific.