日本地球惑星科学連合2021年大会

講演情報

[J] 口頭発表

セッション記号 S (固体地球科学) » S-SS 地震学

[S-SS11] 強震動・地震災害

2021年6月5日(土) 15:30 〜 17:00 Ch.18 (Zoom会場18)

コンビーナ:染井 一寛(一般財団法人地域地盤環境研究所)、松元 康広(株式会社構造計画研究所)、座長:岡崎 智久(理化学研究所革新知能統合研究センター)、江本 賢太郎(東北大学大学院理学研究科)

16:45 〜 17:00

[SSS11-06] 加速度エンベロープのWasserstein内挿を用いた広帯域地震動合成

*岡崎 智久1、八谷 大岳1,2、岩城 麻子3、前田 宜浩3、藤原 広行3、上田 修功1 (1.理化学研究所革新知能統合研究センター、2.和歌山大学、3.防災科学技術研究所)

Hybrid approaches to broadband (BB) ground motion synthesis combine long-period (LP) and short-period (SP) waveforms calculated by two methods suitable for each period range. They have been applied in research and practice, but it is disadvantageous that simulations are independently carried out under different assumptions, which can lead to incompatible time histories and frequency properties.

This study explores an approach for maintaining consistency between LP and SP components using an empirical relationship of past observation records. We propose a machine learning method that generate SP waveforms from LP waveforms obtained using physics-based simulations. Acceleration envelopes and Fourier amplitude spectra are transformed, and they are combined to produce a broadband waveform. To effectively obtain the relationship of envelopes from limited amount of data, we formulate the problem as the conversion of probability distributions to allow the introduction Wasserstein distance, and embed pairs of LP and SP envelopes into a common latent space to improve the consistency of the entire waveform. An experimental application to the 2008 M7 off Ibaraki earthquake demonstrates that the proposed method exhibits superior performance compared to existing methods and neural network approaches. In particular, the proposed method reproduces global properties in the time domain, which confirms the effectiveness of the embedding approach and the advantage of the Wasserstein distance as a dissimilarity measure of envelopes.