日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-SS 地震学

[S-SS04] New trends in data acquisition, analysis and interpretation of seismicity

2024年5月26日(日) 09:00 〜 10:15 303 (幕張メッセ国際会議場)

コンビーナ:Grigoli Francesco(University of Pisa)、Enescu Bogdan(京都大学 大学院 理学研究科 地球惑星科学専攻 地球物理学教室)、青木 陽介(東京大学地震研究所)、内出 崇彦(産業技術総合研究所 地質調査総合センター 活断層・火山研究部門)、座長:Enescu Bogdan(京都大学 大学院 理学研究科 地球惑星科学専攻 地球物理学教室)、内出 崇彦(産業技術総合研究所 地質調査総合センター 活断層・火山研究部門)、青木 陽介(東京大学地震研究所)、Francesco Grigoli(University of Pisa)

09:15 〜 09:30

[SSS04-02] Characterizing Lithospheric Transverse Isotropy through Non-Double CoupleComponents of Moment Tensors

*川勝 均1,2 (1.東京大学地震研究所、2.中央研究院地球科学研究所)

キーワード:moment tensor、non double-couple component、transverse isotropy

The seismic moment tensor, which represents the equivalent body-force system of the seismic source (Backus and Mulcahy, 1976), may exhibit non-double couple components (NDCs) when the earthquake occurs on a planer fault if the source medium is anisotropic (Aki and Richards, 1980; Kawasakai and Tanimoto, 1981). Kawakatsu (1991) reported that the NDCs of the moment tensors for shallow earthquakes from the Harvard CMT catalog (Dziewonski et al. (1981); the predecessor of GCMT) exhibited a systematic characteristic dependent on faulting types. Specifically, the sign of NDC on average systematically switches between normal-faulting and reverse-faulting. The average NDC parameter ε (Giardini, 1983) is negative for thrust faulting and positive for normal faulting. This behavior can be explained if the source region is transversely isotropic with a vertical symmetry axis (VTI, radially anisotropic). In fact, the VTI model of PREM at a depth of 24.4 km predicts the observed systematic NDC pattern, although the magnitude is underestimated, indicating the potential to enhance our understanding of the lithospheric transverse isotropy using the NDC of the moment tensors.

To investigate the lithospheric transverse isotropy structure utilizing the NDCs of the moment tensors, we propose a novel inversion scheme, building upon the approaches employed by (Vavrycuk, 2004) and (Li et al., 2018) for deep and intermediate-depth earthquakes, but with necessary modifications to address shallow sources (Kawakatsu, 1996). Synthetic tests conducted under conditions of random faulting indicate the potential to constrain the S-wave anisotropy ξ and the fifth parameter ηκ (Kawakatsu, 2016). However, in realistic scenarios where a predominant stress regime inuences earthquake occurrence to limit the diversity of faulting types, a significant correlation between these two parameters is anticipated, especially in regional-scale cases. Preliminary application of this method to real data sourced from the GCMT catalog suggests that the lithospheric transverse isotropy of PREM serves as a suitable initial model. However, some adjustments may be necessary, particularly regarding the fifth parameter, to enhance the model's fidelity in representing observed NDCs of the moment tensors.