JpGU-AGU Joint Meeting 2017

講演情報

[EJ] 口頭発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI29] [EJ] データ駆動地球惑星科学

2017年5月20日(土) 10:45 〜 12:15 A01 (東京ベイ幕張ホール)

コンビーナ:桑谷 立(国立研究開発法人 海洋研究開発機構)、Kondrashov Dmitri(University of California, Los Angeles)、長尾 大道(東京大学地震研究所)、Sergey Kravtsov(University of Wisconsin Milwaukee)、座長:長尾 大道(東京大学地震研究所)、座長:Kravtsov Sergey (University of Wisconsin Milwaukee)

11:15 〜 11:30

[MGI29-09] 岩石―水相互作用を支配する不均質反応の時空間ダイナミクスの統計的推定

*大森 敏明1森本 亮太1桑谷 立2岡本 敦3福島 孝治4 (1.神戸大学、2.海洋研究開発機構、3.東北大学、4.東京大学)

キーワード:データ駆動科学、機械学習

It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear spatiotemporal dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We employ sequential Monte Carlo algorithm and other statistical algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, and the diffusion constants, as well as the spatiotemporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

[1] Omori et al., Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions, Phys. Rev. E, 94, 033305 (2016)