2018年度人工知能学会全国大会(第32回)

講演情報

口頭発表

一般セッション » [一般セッション] 2.機械学習

[1Z2] 機械学習-機械学習基礎(2)

2018年6月5日(火) 15:20 〜 17:00 Z会場 (3F 松・竹)

座長:竹内 孝(NTT)

16:20 〜 16:40

[1Z2-04] Kernel median embedding as a functional parameter of the data distribution

〇Matthew J Holland1 (1. Osaka University)

キーワード:Kernel mean, Functional parameter, Non-parametric estimation

In both supervised and unsupervised learning tasks, embedding the underlying data into a function space using a "kernel mean" has been well-studied, and is known to be an efficient means of characterizing even complex distributions. Here we consider a broad generalization of this notion to countless "functional parameters" of the underlying distribution, and as a concrete example explore what may naturally be called the "kernel median" of the data. In this short paper, we formulate the new parameter class, provide a procedure for obtaining an important special case, with basic convergence guarantees and expressions useful for practical implementation.