2019年度 人工知能学会全国大会(第33回)

講演情報

国際セッション

国際セッション » [ES] E-4 Robots and real worlds

[2D3-E-4] Robots and real worlds: planning and control

2019年6月5日(水) 13:20 〜 14:20 D会場 (301B 中会議室)

座長: 下川原 英理(首都大学東京)、評者: 柴田 祐樹(首都大学東京)

14:00 〜 14:20

[2D3-E-4-03] A Multimodal Target-Source Classifier Model for Object Fetching from Natural Language Instructions

〇Aly Magassouba1, Komei Sugiura1, Hisashi Kawai1 (1. NICT)

キーワード:Deep Learning in Robotics and Automation, Spoken Language understanding, Domestic Robots

In this paper, we address the fetching task from ambiguous instructions. A typical fetching task consists of picking up a target object specified by ambiguous instructions. We specifically propose a multimodal target-source classifier model (MTCM) that grounds the instructions in the scene. More explicitly, MCTM can predict the likelihood of a target object in addition to the source of this target using linguistic and visual features. Our approach improves the accuracy of the previous state-of-the-art method for target object prediction in fetching task.