13:20 〜 13:40
[2N3-J-13-01] Denoising autoencoderに基づく心房期外収縮を含むRR間隔データ補正
キーワード:心拍変動、不整脈、ウェアラブルデバイス、ニューラルネットワーク、自己符号化器
①目的
心電図 (ECG)におけるRR感覚(RRI)が時間的に変動する現象を心拍変動(HRV)と呼ぶ.HRVは自律神経活動を反映するため,HRV解析は様々なヘルスモニタリングシステムに用いられている.しかし,不整脈を含むECGデータを使用すると,HRV指標が大きく変化し,ヘルスモニタリングシステムの性能が大きく低下してしまう.そこで,本研究では健常者にも起こりうる珍しくない不整脈である心房期外収縮(PAC)に着目し,HRV解析におけるPACの影響を低減することを目指す.
②結果
PACを含むRRIデータの補正にはdenoising autoencoder(DAE)に基づく手法を用いる.この手法をDAE-based RRI modification(DAE-RM)と呼ぶ.RRIデータに人工的にPACを模したアーチファクトを混入させ,DAE-RMの性能を評価したところ,PACを含むPAC-RRIの平均二乗誤差の値は27.4%減少したことから,DAE-RMがPAC-RRIを適切に補正していることが示された.提案手法がHRV解析を用いた正確なヘルスモニタリングシステムの実現に寄与する可能性が示された.
心電図 (ECG)におけるRR感覚(RRI)が時間的に変動する現象を心拍変動(HRV)と呼ぶ.HRVは自律神経活動を反映するため,HRV解析は様々なヘルスモニタリングシステムに用いられている.しかし,不整脈を含むECGデータを使用すると,HRV指標が大きく変化し,ヘルスモニタリングシステムの性能が大きく低下してしまう.そこで,本研究では健常者にも起こりうる珍しくない不整脈である心房期外収縮(PAC)に着目し,HRV解析におけるPACの影響を低減することを目指す.
②結果
PACを含むRRIデータの補正にはdenoising autoencoder(DAE)に基づく手法を用いる.この手法をDAE-based RRI modification(DAE-RM)と呼ぶ.RRIデータに人工的にPACを模したアーチファクトを混入させ,DAE-RMの性能を評価したところ,PACを含むPAC-RRIの平均二乗誤差の値は27.4%減少したことから,DAE-RMがPAC-RRIを適切に補正していることが示された.提案手法がHRV解析を用いた正確なヘルスモニタリングシステムの実現に寄与する可能性が示された.