2020年度 人工知能学会全国大会(第34回)

講演情報

インタラクティブセッション

[4Rin1] インタラクティブ2

2020年6月12日(金) 09:00 〜 10:40 R01会場 (jsai2020online-2-33)

[4Rin1-59] 大規模地方議会会議録の分散表現を用いた地方議会のトピック分析

〇佐々木 稔1、乙武 北斗2、木村 泰知3 (1.茨城大学、2.福岡大学、3.小樽商科大学)

キーワード:地方議会会議録、分散表現、トピック分析、データ公開

本研究では,地方議会会議録に対して,地方議会でどのような話題が議論されているかについてテキストマイニング手法を利用した分析を行う.既存研究では話題の分析を行う際に,最も適切な単語単位はどの程度なのか,大規模な都道府県議会会議録から得られた単語の分散表現が利用可能なのかについて研究が行われていない.本稿では,NTCIR14 Segmentation task で利用されたデータセットを用いて,単語分割や学習データの違いにより,トピックモデルの結果がどの程度異なるのかについて分析を行った.その結果,単語分割については,Comainuを用いたことにより,固有名詞や複合名詞を扱えるようになり,トピックの意味が理解しやすくなり,ラベル付けが容易できることを確認した.学習コーパスについては, 地方議会会議録を学習データとした分散表現を用いることで,細かな表現に対応できるこ可能性があることを確認した.しかしながら,異なる分散表現を用いたときのトピックには明確な違いを確認することができなかった.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード