2021年度 人工知能学会全国大会(第35回)

講演情報

IEEE CYBCONF

IEEE CYBCONF » IEEE CYBCONF

[1M4-CC] Late Breaking Research Session - A

2021年6月8日(火) 17:20 〜 19:00 M会場 (CybConf会場)

Emi Yuda

17:20 〜 17:40

[1M4-CC-01] Prediction of mTSS in Rheumatoid Arthritis of Hand: A Comparison of Approaches Using Machine Learning and Deep Learning

Kohei Nakatsu1, Kento Morita2, Daisuke Fujita1, Syoji Kobashi1 (1. University of Hyogo, 2. Mie University)

It is estimated that there are 600,000 to 1,000,000 patients with rheumatoid arthritis (RA) in Japan. The modified total sharp score (mTSS) calculated from hand X-ray images is a standard diagnosis method of RA progression but the determination of the score depends on the experience of the physicians. It desires computer-aided diagnosis (CAD) systems to improve the quality of diagnosis for RA patients. In this study, we compare a method using ridge regression and methods using 3 models (VGG16, DenseNet and Xception) of deep learning with respect to the mTSS prediction of hand joints. To compare the 4 method, we conducted an experiment on 90 RA patients using X-ray images of their hands. The experimental results showed that the method using ridge regression gave the best accuracy.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード